双曲线的标准方程及其几何性质(8页).doc
《双曲线的标准方程及其几何性质(8页).doc》由会员分享,可在线阅读,更多相关《双曲线的标准方程及其几何性质(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-双曲线的标准方程及其几何性质-第 8 页双曲线的标准方程及其几何性质一、双曲线的标准方程及其几何性质.1双曲线的定义:平面内与两定点F1、F2的距离差的绝对值是常数(大于零,小于F1F2)的点的轨迹叫双曲线。两定点F1、F2是焦点,两焦点间的距离F1F2是焦距,用2c表示,常数用2表示。(1)若MF1-MF2=2时,曲线只表示焦点F2所对应的一支双曲线.(2)若MF1-MF2=-2时,曲线只表示焦点F1所对应的一支双曲线.(3)若2=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若22c时,动点的轨迹不存在.2.双曲线的标准方程:-=1(0,b0)表示焦点在x轴
2、上的双曲线; -=1(0,b0)表示焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.3.双曲线的简单几何性质:标准方程()()图 象关系范 围顶 点对 称 性关于轴成轴对称、关于原点成中心对称渐 近 线离 心 率焦 点等轴双曲线:x2-y22(0),它的渐近线方程为yx,离心率e.4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。(1)通常消去方程组中变量(或)得到关于变量(或)的一元二次方程,考虑该一元二次方程的判别式,则有:直线与双曲线相交于两个点;直线与双
3、曲线相交于一个点; 直线与双曲线无交点(2)若得到关于(或)的一元二次方程,则直线与双曲线相交于一个点,此时直线平行于双曲线的一条渐近线(3)直线被双曲线截得的弦长或,其中 是直线的斜率,是直线与双曲线的两个交点,的坐标,且,可由韦达定理整体给出二、例题选讲例1、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为()Ax2y21 Bx2y22 Cx2y2 Dx2y2解析:由题意,设双曲线方程为1(a0),则ca,渐近线yx,a22.双曲线方程为x2y22. 答案:B例2、根据以下条件,分别求出双曲线的标准方程 (1)过点,离心率(2)、是双曲线的左、
4、右焦点,是双曲线上一点,双曲线离心率为且,解:(1)依题意,双曲线的实轴可能在轴上,也可能在轴上,分别讨论如下如双曲线的实轴在轴上,设为所求 由,得由点在双曲线上,得, 又,由、得,若双曲线的实轴在轴上,设为所求 同理有,解之,得(不合,舍去)双曲线的实轴只能在轴上,所求双曲线方程为 (2)设双曲线方程为,因,而,由双曲线的定义,得由余弦,得,又,得,所求双曲线的方程为三、巩固测试题1到两定点、的距离之差的绝对值等于6的点的轨迹 ( D )A椭圆B线段C双曲线D两条射线2方程表示双曲线,则的取值范围是( D ) AB C D或3 双曲线的焦距是( C )A4BC8D与有关4若,双曲线与双曲线有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 标准 方程 及其 几何 性质
限制150内