同济大学第二版概率论课后习题答案(27页).doc
《同济大学第二版概率论课后习题答案(27页).doc》由会员分享,可在线阅读,更多相关《同济大学第二版概率论课后习题答案(27页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-同济大学第二版概率论课后习题答案-第 26 页习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件:(1) 抛一枚硬币两次,观察出现的面,事件;(2) 记录某电话总机一分钟内接到的呼叫次数,事件一分钟内呼叫次数不超过次;(3) 从一批灯泡中随机抽取一只,测试其寿命,事件寿命在到小时之间。解 (1) , . (2) 记为一分钟内接到的呼叫次数,则 (3) 记为抽到的灯泡的寿命(单位:小时),则2. 袋中有个球,分别编有号码1至10,从中任取1球,设取得球的号码是偶数,取得球的号码是奇数,取得球的号码小于5,问下列运算表示什么事件:(1);(2);(3);(4);(5);(6);(7
2、).解 (1) 是必然事件; (2) 是不可能事件; (3) 取得球的号码是2,4; (4) 取得球的号码是1,3,5,6,7,8,9,10; (5) 取得球的号码为奇数,且不小于5取得球的号码为5,7,9; (6) 取得球的号码是不小于5的偶数取得球的号码为6,8,10; (7) 取得球的号码是不小于5的偶数=取得球的号码为6,8,103. 在区间上任取一数,记,求下列事件的表达式:(1);(2);(3);(4).解 (1) ; (2) ; (3) 因为,所以;(4) 4. 用事件的运算关系式表示下列事件: (1) 出现,都不出现(记为); (2) 都出现,不出现(记为); (3) 所有三个
3、事件都出现(记为); (4) 三个事件中至少有一个出现(记为); (5) 三个事件都不出现(记为); (6) 不多于一个事件出现(记为); (7) 不多于两个事件出现(记为); (8) 三个事件中至少有两个出现(记为)。 解 (1); (2); (3); (4); (5); (6); (7);(8).5. 一批产品中有合格品和废品,从中有放回地抽取三次,每次取一件,设表示事件“第次抽到废品”,试用表示下列事件:(1) 第一次、第二次中至少有一次抽到废品;(2) 只有第一次抽到废品;(3) 三次都抽到废品;(4) 至少有一次抽到合格品;(2) 只有两次抽到废品。解 (1); (2); (3);(
4、4); (5). 6. 接连进行三次射击,设=第次射击命中,三次射击恰好命中二次,三次射击至少命中二次;试用表示和。解 习题二解答 1从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率。解 这是不放回抽取,样本点总数,记求概率的事件为,则有利于的样本点数. 于是2一口袋中有5个红球及2个白球,从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球,设每次取球时袋中各个球被取到的可能性相同。求(1) 第一次、第二次都取到红球的概率;(2) 第一次取到红球,第二次取到白球的概率;(3) 二次取得的球为红、白各一的概率;(4) 第二次取到红球的概率。解 本题是
5、有放回抽取模式,样本点总数. 记(1)(2)(3)(4)题求概率的事件分别为.()有利于的样本点数,故 () 有利于的样本点数,故 () 有利于的样本点数,故 () 有利于的样本点数,故 .3一个口袋中装有6只球,分别编上号码1至6,随机地从这个口袋中取2只球,试求:(1) 最小号码是3的概率;(2) 最大号码是3的概率。解 本题是无放回模式,样本点总数.() 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且有一次抽到3,因而有利样本点数为,所求概率为 .() 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是有利样本点数为,所求概率为 .4一个盒子中装有6只晶体管,其中
6、有2只是不合格品,现在作不放回抽样,接连取2次,每次取1只,试求下列事件的概率:(1) 2只都合格;(2) 1只合格,1只不合格;(3) 至少有1只合格。解 分别记题(1)、(2)、(3)涉及的事件为,则注意到,且与互斥,因而由概率的可加性知5掷两颗骰子,求下列事件的概率:(1) 点数之和为7;(2) 点数之和不超过5;(3) 点数之和为偶数。解 分别记题(1)、(2)、(3)的事件为,样本点总数()含样本点,(1,6),(6,1),(3,4),(4,3)()含样本点(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,2),(2,3),(3,2)()含样本
7、点(1,1),(1,3),(3,1),(1,5),(5,1);(2,2),(2,4),(4,2),(2,6),(6,2),(3,3), (3,5),(5,3);(4,4),(4,6),(6,4);(5,5);(6,6), 一共18个样本点。6把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住不同宿舍的概率。解 记求概率的事件为,样本点总数为,而有利的样本点数为,所以 .7总经理的五位秘书中有两位精通英语,今偶遇其中的三位,求下列事件的概率:(1) 事件:“其中恰有一位精通英语”;(2) 事件:“其中恰有二位精通英语”;(3) 事件:“其中有人精通英语
8、”。解 样本点总数为(1) ;(2) ;(3) 因,且与互斥,因而8设一质点一定落在平面内由轴、轴及直线所围成的三角形内,而落在这三角形内各点处的可能性相等,计算这质点落在直线的左边的概率。解 记求概率的事件为,则为图中阴影部分,而,最后由几何概型的概率计算公式可得111/3图2.3.9(见前面问答题2. 3)10已知,求(1),;(2);(3);(4);(5).解 (1),;(2);(3);(4), ;(5)11设是两个事件,已知,试求及解 注意到 ,因而 . 于是, ;.习题三解答1已知随机事件的概率,随机事件的概率,条件概率,试求及.解 2一批零件共100个,次品率为10%,从中不放回取
9、三次(每次取一个),求第三次才取得正品的概率。解 .3某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19(1) 已知他已投入基金,再购买股票的概率是多少?(2) 已知他已购买股票,再投入基金的概率是多少?解 记基金,股票,则(1) (2) .4给定,验证下面四个等式:解 5有朋自远方来,他坐火车、船、汽车和飞机的概率分别为0.3,0.2,0.1,0.4,若坐火车,迟到的概率是0.25,若坐船,迟到的概率是0.3,若坐汽车,迟到的概率是0.1,若坐飞机则不会迟到。求他最后可能迟到的概率。解 迟到,坐火车,坐船,坐汽车,乘飞机,则 ,且按题意由全概率
10、公式有: 6已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率:(1) 随机取一只袋,再从该袋中随机取一球,该球是红球;(2) 合并两只袋,从中随机取一球,该球是红球。解 (1) 记该球是红球,取自甲袋,取自乙袋,已知,所以(2) 7某工厂有甲、乙、丙三个车间,生产同一产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求该厂产品的次品率。解 8发报台分别以概率0.6,0.4发出和,由于通信受到干扰,当发出时,分别以概率0.8和0.2收到和,同样,当发出信号时,分别以0.9和0.1的概率收到和。求(1) 收到信号的概率;(
11、2) 当收到时,发出的概率。解 记 收到信号,发出信号(1) (2) .9设某工厂有三个车间,生产同一螺钉,各个车间的产量分别占总产量的25%,35%,40%,各个车间成品中次品的百分比分别为5%,4%,2%,如从该厂产品中抽取一件,得到的是次品,求它依次是车间生产的概率。解 为方便计,记事件为车间生产的产品,事件次品,因此10设与独立,且,求下列事件的概率:,.解 11已知独立,且,求.解 因,由独立性有从而 导致 再由 ,有 所以 。最后得到 12甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为1/3,1/2,2/3,求目标被命中的概率。解 记 命中目标,甲命中,乙命中,丙命中,
12、则 ,因而13设六个相同的元件,如下图所示那样安置在线路中,设每个元件不通达的概率为,求这个装置通达的概率。假定各个元件通达与否是相互独立的。21解 记 通达,43元件通达,65则 , 所以图3.114假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率。解 .15灯泡耐用时间在1000小时以上的概率为0.2,求三个灯泡在使用1000小时以后最多只有一个坏了的概率。解 .16设在三次独立试验中,事件出现的概率相等,若已知至少出现一次的概率等于19/27,求事件在每次试验中出现的概率.解 记在第
13、次试验中出现, 依假设 所以, , 此即 .17加工一零件共需经过3道工序,设第一、二、三道工序的次品率分别为2%、3%、5%. 假设各道工序是互不影响的,求加工出来的零件的次品率。解 注意到,加工零件为次品,当且仅当1-3道工序中至少有一道出现次品。记 第道工序为次品, 则次品率 18三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4. 求此密码被译出的概率。解 记 译出密码, 第人译出, 则19将一枚均匀硬币连续独立抛掷10次,恰有5次出现正面的概率是多少?有4次至6次出现正面的概率是多少?解 (1) ;(2) .20某宾馆大楼有4部电梯,通过调查,知道在某时刻,各
14、电梯正在运行的概率均为0.75,求:(1) 在此时刻至少有1台电梯在运行的概率;(2) 在此时刻恰好有一半电梯在运行的概率;(3) 在此时刻所有电梯都在运行的概率。解 (1) (2) (3) 习题四解答1. 下列给出的数列,哪些是随机变量的分布律,并说明理由。(1);(2);(3);(4)。解 要说明题中给出的数列,是否是随机变量的分布律,只要验证是否满足下列二个条件:其一条件为,其二条件为。依据上面的说明可得(1)中的数列为随机变量的分布律;(2)中的数列不是随机变量的分布律,因为;(3)中的数列为随机变量的分布律;(4)中的数列不是随机变量的分布律,这是因为。2. 试确定常数,使成为某个随
15、机变量X的分布律,并求:;。解 要使成为某个随机变量的分布律,必须有,由此解得;(2) (3)。3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字。从这袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X的分布律与分布函数。解 X可能取的值为-3,1,2,且,即X的分布律为X-312概率X的分布函数 0 1 4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5,从中随机地取3个,以X表示取出的3个球中最大号码,写出X的分布律和分布函数。解 依题意X可能取到的值为3,4,5,事件表示随机取出的3个球的最大号码为3,则另两个球的只能为1号,2号,即;事
16、件表示随机取出的3个球的最大号码为4,因此另外2个球可在1、2、3号球中任选,此时;同理可得。X的分布律为X345概率X的分布函数为 0 1 5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为0.6,求击中目标的次数X的分布律。解 依题意X服从参数的二项分布,因此,其分布律具体计算后可得X012345概率6. 从一批含有10件正品及3件次品的产品中一件一件的抽取。设每次抽取时,各件产品被抽到的可能性相等。在下列三种情形下,分别求出直到取得正品为止所需次数X的分布律。(1) 每次取出的产品立即放回这批产品中再取下一件产品;(2) 每次取出的产品都不放回这批产品中;(3) 每次取出一
17、件产品后总是放回一件正品。解 (1)设事件表示第次抽到的产品为正品,依题意,相互独立,且而即X服从参数的几何分布。(2)由于每次取出的产品不再放回,因此,X可能取到的值为1,2,3,4,X的分布律为X1234概率(3)X可能取到的值为1,2,3,4,所求X的分布律为X1234概率由于三种抽样方式不同,导致X的分布律也不一样,请仔细体会它们的不同处。7. 设随机变量,已知,求与的值。解 由于,因此。由此可算得 即 解得;此时,。 8. 掷一枚均匀的硬币4次,设随机变量X表示出现国徽的次数,求X的分布函数。解 一枚均匀硬币在每次抛掷中出现国徽的概率为,因此X服从的二项分布,即由此可得X的分布函数
18、0, 1, 9. 某商店出售某种物品,根据以往的经验,每月销售量X服从参数的泊松分布,问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?解 设至少要进件物品,由题意应满足即 查泊松分布表可求得 。10. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为0.0001,在某天该段时间内有1000辆汽车通过,求事故次数不少于2的概率。解 设X为1000辆汽车中出事故的次数,依题意,X服从的二项分布,即,由于较大,较小,因此也可以近似地认为X服从的泊松分布,即,所求概率为11. 某试验的成功概率为0.75,失败概率为0.25,若以X表示试验者获得首次成功所进行的试验次数,写出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济大学 第二 概率论 课后 习题 答案 27
限制150内