导数中双变量函数构造(14页).doc
《导数中双变量函数构造(14页).doc》由会员分享,可在线阅读,更多相关《导数中双变量函数构造(14页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-导数中双变量函数构造-第 15 页导数中双变量的函数构造21(12分)已知函数()(1)若函数是单调函数,求的取值范围;(2)求证:当时,都有21解:(1)函数的定义域为,函数是单调函数,或在上恒成立,即,令,则,当时,;当时,则在上递减,上递增,;,即,由得在上递减,上递增,又,时,;综上可知,或; .6分(2)由(1)可知,当时,在上递减,即,要证,只需证,即证,令,则证,令,则,在上递减,又,即,得证 .12分典例已知函数f(x)ax2xln x(aR)的图象在点(1,f(1)处的切线与直线x3y0垂直(1)求实数a的值;(2)求证:当nm0时,ln nln m解(1)因为f(x)ax
2、2xln x,所以f(x)2axln x1,因为切线与直线x3y0垂直,所以切线的斜率为3,所以f(1)3,即2a13,故a1(2)证明:要证ln nln m,即证ln,只需证ln 0令x,构造函数g(x)ln xx(x1),则g(x)1因为x1,),所以g(x)10,故g(x)在(1,)上单调递增由已知nm0,得1,所以gg(1)0,即证得ln 0成立,所以命题得证1(2017石家庄质检)已知函数f(x)a(x0),其中e为自然对数的底数(1)当a0时,判断函数yf(x)极值点的个数;(2)若函数有两个零点x1,x2(x1x2),设t,证明:x1x2随着t的增大而增大解:(1)当a0时,f(
3、x)(x0),f(x),令f(x)0,得x2,当x(0,2)时,f(x)0,yf(x)单调递减,当x(2,)时,f(x)0,yf(x)单调递增,所以x2是函数的一个极小值点,无极大值点,即函数yf(x)有一个极值点(2)证明:令f(x)a0,得xaex,因为函数有两个零点x1,x2(x1x2),所以x1aex1,xaex2,可得ln x1ln ax1,取对数,做差将两个零点x1,x2(x1x2),用t表示,注意的隐含范围。ln x2ln ax2故x2x1ln x2ln x1ln又t,则t1,且解得x1,x2所以x1x2令h(x),x(1,),则h(x)令u(x)2ln xx,得u(x)2当x(
4、1,)时,u(x)0因此,u(x)在(1,)上单调递增,故对于任意的x(1,),u(x)u(1)0,由此可得h(x)0,故h(x)在(1,)上单调递增因此,由可得x1x2随着t的增大而增大2(2016全国乙卷)已知函数f(x)(x2)exa(x1)2有两个零点(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1x20,则当x(,1)时,f(x)0,所以f(x)在(,1)内单调递减,在(1,)内单调递增又f(1)e,f(2)a,取b满足b0且b(b2)a(b1)2a0,故f(x)存在两个零点设a0,因此f(x)在(1,)内单调递增又当x1时,f(x)0,所以f(x)不存在两个
5、零点若a1,故当x(1,ln(2a)时,f(x)0.因此f(x)在(1,ln(2a)内单调递减,在(ln(2a),)内单调递增又当x1时,f(x)0,所以f(x)不存在两个零点综上,a的取值范围为(0,)(2)证明:不妨设x1x2,由(1)知,x1(,1),x2(1,),2x2(,1),又f(x)在(,1)内单调递减,所以x1x2f(2x2),即f(2x2)1时,g(x)1时,g(x)0.从而g(x2)f(2x2)0,故x1x22.3.已知函数f(x)exax1(a为常数),曲线yf(x)在与y轴的交点A处的切线斜率为1(1)求a的值及函数yf(x)的单调区间;(3)若x1ln 2,x2ln
6、2,且f(x1)f(x2),试证明:x1x22ln 2解:(1)由f(x)exax1,得f(x)exa又f(0)1a1,所以a2,所以f(x)ex2x1,f(x)ex2由f(x)ex20,得xln 2所以函数yf(x)在区间(,ln 2)上单调递减,在(ln 2,)上单调递增(2)证明:设xln 2,所以2ln 2xln 2,f(2ln 2x)e(2ln 2x)2(2ln 2x)12x4ln 21令g(x)f(x)f(2ln 2x)ex4x4ln 2(xln 2),所以g(x)ex4ex40,当且仅当xln 2时,等号成立,所以g(x)f(x)f(2ln 2x)在(ln 2,)上单调递增又g(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 变量 函数 构造 14
限制150内