一元二次方程根与系数的关系深刻复习课.ppt
《一元二次方程根与系数的关系深刻复习课.ppt》由会员分享,可在线阅读,更多相关《一元二次方程根与系数的关系深刻复习课.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学(人教版)上册,21.2.4 一元二次方程根与系数的关系,复习课,一元二次方程根与系数的关系,推论1,推论2,说出下列各方程的两根之和与两根之积:,(1) x2 - 2x - 1=0,(3) 2x2 - 6x =0,(4) 3x2 = 4,(2) 2x2 - 3x + =0,x1+x2=2,x1x2=-1,x1+x2=,x1+x2=3,x1+x2=0,x1x2=,x1x2=0,x1x2= -,说一说:,在使用韦达定理时,应注意: 、不是一般式的要先化成一般式; 、在使用X1+X2= 时,注意“ ”不要漏写。 (3) 前提是方程有实数根即0,几种常见的求代数式的值,引申:1、若ax2b
2、xc0 (a0 0) (1)若两根互为相反数, (2)若两根互为倒数, (3)若一根为0, (4)若一根为1, (5)若一根为1, (6)若a、c异号,补充规律:,则b0;,则ac;,则c0 ;,则abc0 ;,则abc0;,方程一定有两个实数根.,例1、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。,解法一:,设方程的另一个根为x1.,由韦达定理,得,x1 2= k+1,x1 2= 3k,解这方程组,得,x1 =3,k =2,答:方程的另一个根是3 , k的值是2。,作用1:已知方程一根,求另一根及未知数。,例1、已知方程x2-(k+1)x+3k=0的一个根是
3、2 , 求它的另一个根及k的值。,解法二:,设方程的另一个根为x1.,把x=2代入方程,得 4-2(k+1)+3k=0,解这方程,得 k= - 2,由韦达定理,得x123k,即2 x1 6, x1 3,答:方程的另一个根是3 , k的值是2。,作用1:已知方程一根,求另一根及未知数。,解:设方程的两根分别为 和 , 则: 而方程的两根互为倒数 即 所以: 得:,例2.方程 的两根互为倒数,求k的值。,例3.方程3x2+x+k=0的两根之积为-3,求k的值。,解:设方程的两根分别为x1和x2, 则:x1x2=, k=-9,例1.已知两个数的和是1,积是-2,求这两 个数。,解法一:设两数分别为x
4、,y则:,解得:,x=2 y=1,或,1 y=2,解法二:设两数分别为一个一元二次方程 的两根则:,求得,这两个数为2和-,作用2:已知两个数的和与积,求两数,例2.已知两数之和为14,乘积为-51,求这两数.,设这两数为 m, n,,解:,m, n可以看作是方程 x2-14x-51=0的两个根,这两数为17,-3,作用2:已知两个数的和与积,求两数,作用3:求代数式的值,例1、已知2x2-x-2=0的两根是x1 , x2 。求下列代数式的值。,(1) x12+x22 (2) (3) (x1-x2)2,解:x1+x2= , x1 x2=-1,x12+x22 (x1x2)2 -2x1x2,(2)
5、x1+x2= , x1 x2=-1,(3)x1+x2= , x1 x2=-1,(x1-x2)2=x12+x22-2x1x2,=(x1+x2)2-4x1x2,作用3:求代数式的值,(4) (x1+1)(x2+1) (5)x1-x2 (6),(4)x1+x2= , x1 x2=-1,原式=x1x2+x1+x2+1=,(5)x1+x2= , x1 x2=-1,(6)x1+x2= , x1 x2=-1,(7)x1+x2= , x1 x2=-1,(x1-x2)2=(x1+x2)2-4x1x2,(8)x1+x2= , x1 x2=-1,例2.已知方程的两个实数根 是且 求k的值。,解:由根与系数的关系得
6、x1+x2=-k, x1x2=k+2 又 x12+ x2 2 = 4 即(x1+ x2)2 -2x1x2=4 K2 -2(k+2)=4 K2 -2k-8=0,解得:k=4 或k=-2, = K2-4k-8 当k=4时, =-80 k=4(舍去) 当k=-2时,=40 k=-2,1.已知a、b是一元二次方程x2+3x-7=0的两个实数根,求代数式a2+4a+b的值 解:a、b是一元二次方程x2+3x-7=0的两个实数根 a2+3a-7=0,a+b=-3, 则a2+4a+b=a2+3a+a+b=7-3=4,课堂练习,作业:已知m、n是方程x2-3x+1=0的两根,求2m2+4n2-6n+2014的
7、值。,2.已知x1、x2是方程x2+(m-2)x+2=0的两个实数根,求(2+mx1+x12)(2+mx2+x22)的值。,解:x12+(m-2)x1+2=0 , x22+(m-2)x2+2=0 x12+2=2x1-mx1 , x22+2=2x2-mx2 又x1x2=2 原式=(2x1-mx1+mx1)(2x2-mx2+mx2) =2x12x2 =4x1x2 =42 =8,作业:已知x1、x2是方程x2-2013x+1=0的两个实数根,求(1-2015x1+x12)(1-2015x2+x22)的值。,3.已知 m2+2m-2009=0,n2+2n-2009=0(mn)求(m-1)(n-1).,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 系数 关系 瓜葛 深刻 深入 复习 温习
限制150内