高中数学选修2-1课后习题答案[人教版](35页).doc
《高中数学选修2-1课后习题答案[人教版](35页).doc》由会员分享,可在线阅读,更多相关《高中数学选修2-1课后习题答案[人教版](35页).doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学选修2-1课后习题答案人教版-第 35 页高中数学选修2-1课后习题答案第一章 常用逻辑用语1.1 命题及其关系练习(P4)1、略. 2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题. (2)若一个函数是偶函数,则这个函数的图象关于轴对称. 这是真命题. (3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题. 否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能
2、被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题. 否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题. 逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若,则 所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A组(P8)1、(1)是; (2)
3、是; (3)不是; (4)不是.2、(1)逆命题:若两个整数与的和是偶数,则都是偶数. 这是假命题. 否命题:若两个整数不都是偶数,则不是偶数. 这是假命题. 逆否命题:若两个整数与的和不是偶数,则不都是偶数. 这是真命题.(2)逆命题:若方程有实数根,则. 这是假命题. 否命题:若,则方程没有实数根. 这是假命题. 逆否命题:若方程没有实数根,则. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等. 逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上. 这是真命题. 否命题:若一个点到不在线段的垂直平分线上,则这个点
4、到线段的两个端点的距离不 相等. 这是真命题. 逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等. 逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题. 否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题. 逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否
5、命题为真命题. 所以,原命题也是真命题.习题1.1 B组(P8)证明:要证的命题可以改写成“若,则”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设是的两条互相平分的相交弦,交点是,若和圆心重合,则是经过圆心的弦,是两条直径. 若和圆心不重合,连结和,则是等腰,的底边上中线,所以,. 和都经过点,且与垂直,这是不可能的. 所以,和必然重合. 即和是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2 充分条件与必要条件 练习(P10)1、(1); (2);
6、(3); (4). 2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,是的充要条件; (2)原命题和它的逆命题都是真命题,是的充要条件; (3)原命题是假命题,逆命题是真命题,是的必要条件.2、(1)是的必要条件; (2)是的充分条件;(3)是的充要条件; (4)是的充要条件.习题1.2 A组(P12)1、略. 2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件; (3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是.习题1.2 B组(P1
7、3)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果,那么. 所以 所以,. 即 ,所以,是等边三角形. (2)必要性:如果是等边三角形,那么 所以 所以 所以1.3 简单的逻辑联结词练习(P18)1、(1)真; (2)假. 2、(1)真; (2)假.3、(1),真命题; (2)3不是方程的根,假命题;(3),真命题.习题1.3 A组(P18)1、(1)或,真命题; (2)且,假命题; (3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1)不是有理数,真命题; (2)5是15的约
8、数,真命题; (3),假命题; (4),真命题; (5)空集不是任何集合的真子集,真命题.习题1.3 B组(P18)(1)真命题. 因为为真命题,为真命题,所以为真命题;(2)真命题. 因为为真命题,为真命题,所以为真命题;(3)假命题. 因为为假命题,为假命题,所以为假命题;(4)假命题. 因为为假命题,为假命题,所以为假命题.1.4 全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1); (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直
9、角三角形; (2)每个梯形都不是等腰梯形; (3)所有实数的绝对值都是正数.习题1.4 A组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1); (2)存在一个可以被5整除的整数,末位数字不是0; (3); (4)所有四边形的对角线不互相垂直.习题1.4 B组(P27)(1)假命题. 存在一条直线,它在轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与轴不相交;(3)假命题. 每个三角形的内角和不小于;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A组(P30)1、原命题可以写为:若一个三角
10、形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题; 否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略. 3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1); (2)在圆上,为圆心; (3)是整数,;(4)是无理数,是有理数.6、(1),真命题; (2),假命题; (3),真命题; (4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参
11、考题B组(P31)1、(1); (2),或.2、(1),的对边分别是,则; (2),的对边分别是,则.第二章 圆锥曲线与方程2.1 曲线与方程练习(P37)1、是. 容易求出等腰三角形的边上的中线所在直线的方程是.2、.3、解:设点的坐标分别为,. (1)当时,直线斜率 所以, 由直线的点斜式方程,得直线的方程为 . 令,得,即点的坐标为. 由于点是线段的中点,由中点坐标公式得. 由得,代入, 得,即 (2)当时,可得点的坐标分别为, 此时点的坐标为,它仍然适合方程 由(1)(2)可知,方程是点的轨迹方程,它表示一条直线.习题2.1 A组(P37)1、解:点、在方程表示的曲线上;点不在此曲线上
12、2、解:当时,轨迹方程为;当时,轨迹为整个坐标平面.3、以两定点所在直线为轴,线段垂直平分线为轴,建立直角坐标系,得点的轨迹方程为.4、解法一:设圆的圆心为,则点的坐标是. 由题意,得,则有. 所以, 化简得 当时,点适合题意;当时,点不合题意. 解方程组 , 得 所以,点的轨迹方程是,. 解法二:注意到是直角三角形, 利用勾股定理,得, 即. 其他同解法一.习题2.1 B组(P37)1、解:由题意,设经过点的直线的方程为. 因为直线经过点,所以 因此, 由已知点的坐标为,所以点的轨迹方程为.2、解:如图,设动圆圆心的坐标为. 由于动圆截直线和所得弦分别为,所以,. 过点分别作直线和的垂线,垂
13、足分别为,则,.连接,因为, 则有,所以,化简得,.因此,动圆圆心的轨迹方程是.2.2 椭圆练习(P42)1、14. 提示:根据椭圆的定义,因为,所以.2、(1); (2); (3),或.3、解:由已知,所以. (1)的周长. 由椭圆的定义,得,. 所以,的周长. (2)如果不垂直于轴,的周长不变化. 这是因为两式仍然成立,的周长,这是定值.4、解:设点的坐标为,由已知,得直线的斜率 ;直线的斜率 ;由题意,得,所以化简,得因此,点的轨迹是直线,并去掉点.练习(P48)1、以点(或)为圆心,以线段(或)为半径画圆,圆与轴的两个交点分别为. 点就是椭圆的两个焦点. 这是因为,在中,所以,. 同样
14、有.2、(1)焦点坐标为,;(2)焦点坐标为,.3、(1); (2).4、(1) (2),或.5、(1)椭圆的离心率是,椭圆的离心率是, 因为,所以,椭圆更圆,椭圆更扁;(2)椭圆的离心率是,椭圆的离心率是, 因为,所以,椭圆更圆,椭圆更扁.6、(1); (2); (3). 7、.习题2.2 A组(P49)1、解:由点满足的关系式以及椭圆的定义得,点的轨迹是以,为焦点,长轴长为10的椭圆. 它的方程是.2、(1); (2); (3),或.3、(1)不等式,表示的区域的公共部分; (2)不等式,表示的区域的公共部分. 图略.4、(1)长轴长,短轴长,离心率,焦点坐标分别是,顶点坐标分别为,;(2
15、)长轴长,短轴长,离心率,焦点坐标分别是,顶点坐标分别为,.5、(1); (2),或; (3),或.6、解:由已知,椭圆的焦距. 因为的面积等于1,所以,解得.(第7题) 代入椭圆的方程,得,解得. 所以,点的坐标是,共有4个.7、解:如图,连接. 由已知,得. 所以,. 又因为点在圆内,所以 根据椭圆的定义,点的轨迹是以为焦点,为长轴长的椭圆.8、解:设这组平行线的方程为. 把代入椭圆方程,得. 这个方程根的判别式 (1)由,得. 当这组直线在轴上的截距的取值范围是时,直线与椭圆相交. (2)设直线与椭圆相交得到线段,并设线段的中点为. 则 . 因为点在直线上,与联立,消去,得. 这说明点的
16、轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.9、.10、地球到太阳的最大距离为km,最下距离为km.习题2.2 B组(P50)1、解:设点的坐标为,点的坐标为,则,. 所以, .因为点在圆上,所以 .将代入,得点的轨迹方程为,即所以,点的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为,半径为,两已知圆的圆心分别为.分别将两已知圆的方程 ,配方,得 , 当与:外切时,有 当与:内切时,有 两式的两边分别相加,得即, 化简方程.先移项,再两边分别平方,并整理,得 将两边分别平方,并整理,得 将常数项移至方程的右边,两边
17、分别除以108,得 由方程可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,. 解法二:同解法一,得方程 由方程可知,动圆圆心到点和点距离的和是常数12,所以点的轨迹方程是焦点为、,长轴长等于12的椭圆. 并且这个椭圆的中心与坐标原点重合,焦点在轴上,于是可求出它的标准方程.因为 ,所以,所以.于是,动圆圆心的轨迹方程为.3、解:设是点到直线的距离,根据题意,所求轨迹就是集合 由此得 将上式两边平方,并化简,得 ,即 所以,点的轨迹是长轴、短轴长分别为8,的椭圆.4、解:如图,由已知,得,. 因为是线段的四等分点, 是线段的四等分点, 所以,; 直线的方程是; 直线的方程是. 联立这两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 选修 课后 习题 答案 35
限制150内