高中数学选修2-3导学案(15页).doc
《高中数学选修2-3导学案(15页).doc》由会员分享,可在线阅读,更多相关《高中数学选修2-3导学案(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学选修2-3导学案-第 15 页2.1.1 离散型随机变量 学习目标 1理解随机变量的定义;2掌握离散型随机变量的定义课前预习导学案一、 课前准备(预习教材,找出疑惑之处)复习1:掷一枚骰子,出现的点数可能是 ,出现偶数点的可能性是 复习2:掷硬币这一最简单的随机试验,其可能的结果是 , 两个事件课内探究导学案二、新课导学 学习探究探究任务一:在掷硬币的随机试验中,其结果可以用数来表示吗? 我们确定一种 关系,使得每一个试验结果都用一个 表示,在这种 关系下,数字随着试验结果的变化而变化新知1:随机变量的定义:像这种随着试验结果变化而变化的变量称为 , 常用字母 、 、 、 表示思考:
2、随机变量与函数有类似的地方吗?新知2:随机变量与函数的关系:随机变量与函数都是一种 ,试验结果的范围相当于函数的 ,随机变量的范围相当于函数的 试试: 在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数将随着抽取结果的变化而变化,是一个 ,其值域是 随机变量表示 ;表示 ;表示 ;“抽出3件以上次品”可用随机变量 表示新知3:所有取值可以 的随机变量,称为离散型随机变量思考: 电灯泡的寿命是离散型随机变量吗?随机变量是一个离散型随机变量吗? 典型例题例1某林场树木最高可达36,林场树木的高度是一个随机变量吗?若是随机变量,的取值范围是什么?例2 写出下列随机变量可能取的值,并说
3、明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出的球的最大号码数;(2)某单位的某部电话在单位时间内收到的呼叫次数 动手试试练1下列随机试验的结果能否用离散型号随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果 (1)抛掷两枚骰子,所得点数之和;(2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶某种标有2500的饮料,其实际量与规定量之差练2盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为(1)写出可能取的值;(2)写出所表示的
4、事件三、总结提升 学习小结1随机变量;2离散型随机变量课后练习与提高 当堂检测(时量:5分钟 满分:10分)计分:1.下列先项中不能作为随机变量的是( )A投掷一枚硬币次,正面向上的次数 B某家庭每月的电话费 C在n次独立重复试验中,事件发生的次数D一个口袋中装有3个号码都为1的小球,从中取出2个球的号码的和2抛掷两枚骰子,所得点数之和记为,那么,表示随机实验结果是 ( ) A一颗是3点,一颗是1点 B两颗都是2点 C两颗都是4点 D一颗是3点,一颗是1点或两颗都是2点3某人射击命中率为0.6,他向一目标射击,当第一次射击队中目标则停止射击,则射击次数的取值是( )A1,2,3, , B1,2
5、,3,C0,1,2, , D0,1,2,4已知为离散型随机变量,的取值为1,2,10,则的取值为 5一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以表示取出的球的最大号码,则表示的试验结果是 课后作业 1在某项体能测试中,跑1km成绩在4min之内为优秀,某同学跑1km所花费的时间是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果 (1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;(2)在优、良、中、及格、不
6、及格5个等级的测试中,某同学可能取得的成绩2.1.2 离散型随机变量的分布列 学习目标 1理解离散型随机变量的分布列的两种形式;2理解并运用两点分布和超几何分布课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是( )A2 B2或1 C1或0 D2或1或0复习2:将一颗骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差是2的概率是 课内探究导学案二、新课导学 学习探究探究任务一: 抛掷一枚骰子,向上一面的点数是一个随机变量其可能取的值是 ;它取各个不同值的概率都等于 问题:能否用表格的形式来表示呢?123
7、456新知1:离散型随机变量的分布列:若离散型随机变量可能取的不同值为,取每一个值的概率则分布列表示:等式表示: 图象表示:新知2:离散型随机变量的分布列具有的性质:(1) ;(2) 试试:某同学求得一离散型随机变量的分布列如下:01230.20.30.150.45试说明该同学的计算结果是否正确 典型例题例1在掷一枚图钉的随机试验中,令 如果针尖向上的概率为,试写出随机变量的分布列变式:篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为 0.7,求他一次罚球得分的分布列 新知3:两点分布列:01称服从 ;称 为 例2在含有5件次品的100件产品中,任取3件,试求:(1)取到
8、的次品数的分布列;(2)至少取到1件次品的概率变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数的分布列?新知4:超几何分布列:01 动手试试练1在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同一次从中摸出5个球,至少摸到3个红球就中奖求中奖的概率 练2从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A的概率三、总结提升 学习小结1离散型随机变量的分布列;2离散型随机变量的分布的性质;3两点分布和超几何分布课后练习与提高 当堂检测(时量:5分钟 满分:10分)计分:1.若随机变量的概率分布如下表所示,则表中的值为( )1234P1/
9、21/61/6A1 B1/2 C1/3 D1/6 2某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用表示这6人中“三好生”的人数,则概率等于的是( ) A B C D3若,其中,则等于( )A BC D 4已知随机变量的分布列为123450.10.20.40.20.1则为奇数的概率为 5在第4题的条件下,若,则的分布列为 课后作业 1学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率2老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格某同学只能背诵其中的6篇,试求:(1
10、)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率2.2.1 条件概率 学习目标 1在具体情境中,了解条件概率的意义;2学会应用条件概率解决实际问题课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:下面列出的表达式是否是离散型随机变量的分布列( )A, B,C , D,复习2:设随机变量的分布如下:123P求常数课内探究导学案二、新课导学 学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?若抽到中奖奖券用“”表示,没有抽到用“”表示,则所有可能的抽取情况为 ,用表示最后一名同学抽到中奖奖券的事件,则 ,故最后
11、一名同学抽到中奖奖券的概率为:思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是? 因为已经知道第一名同学没有抽到中奖奖券,故所有可能的抽取情况变为 最后一名同学抽到中奖奖券的概率为 记作:新知1:在事件发生的情况下事件发生的条件概率为:= 新知2:条件概率具有概率的性质:如果和是两个互斥事件,则= 典型例题例1在5道题中有3道理科题和2道文科题如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率变式:在第1次抽到理科题的条件下,第2次抽到文科题的概率?例
12、2一张储蓄卡的密码共有位数字,每位数字都可从中任选一个某人在银行自动提款机上取钱时,忘记了密码的最后一位数字求:(1)任意按最后一位数字,不超过次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率变式:任意按最后一位数字,第次就按对的概率? 动手试试练1从一副不含大小王的张扑克牌中不放回地抽取次,每次抽张已知第次抽到,求第次也抽到的概率 练2某地区气象台统计,该地区下雨的概率是,刮三级以上风的概率为,既刮风又下雨的概率为,设为下雨,为刮风,求: (1) ; (2)三、总结提升 学习小结1理解条件概率的存在;2求条件概率;3条件概率中的“条件”就是“前提”的意思课后练习与
13、提高 当堂检测(时量:5分钟 满分:10分)计分:1.下列正确的是( )A= B= C D=2盒中有25个球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一个球,已知它不是黑球,则它是黄球的概率为( ) A 1/3 B1/4 C 1/5 D1/6 3某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问它能活到25岁的概率是( )A0.4 B0.8 C0.32 D0.5 4,则= ,= 5一个家庭中有两个小孩,已知这个家庭中有一个是女孩,问这时另一个小孩是男孩的概率是 课后作业 1设某种灯管使用了500h能继续使用的概率为0.94,使用到700
14、h后还能继续使用的概率为0.87,问已经使用了500h的灯管还能继续使用到700h的概率是多少?2100件产品中有5件次品,不入回地抽取次,每次抽件已知第次抽出的是次品,求第次抽出正品的概率 2.2.2 事件的相互独立性 学习目标 1了解相互独立事件的意义,求一些事件的概率;2理解独立事件概念以及其与互斥,对立事件的区别与联系课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:把一枚硬币任意掷两次,事件“第一次出现正面”,事件B=“第二次出现正面”,则等于?复习2:已知,则 成立A B +C D课内探究导学案二、新课导学 学习探究探究: 3张奖券中只有1张能中奖,现分别由3名同学有放回
15、地抽取,事件为“第一名同学没有抽到奖券”,事件为“最后一名同学抽到奖券”,事件的发生会影响事件发生的概率吗?新知1:事件与事件的相互独立: 设为两个事件,如果 ,则称事件与事件的相互独立注意:在事件与相互独立的定义中,与的地位是对称的;不能用作为事件与事件相互独立的定义,因为这个等式的适用范围是;如果事件与相互独立,那么与,与,与也都相互独立试试: 分别抛掷2枚质地均匀的硬币,设是事件“第1枚为正面”,是事件“第2枚为正面”,是事件“2枚结果相同”,问:中哪两个相互独立?小结:判定相互独立事件的方法:由定义,若,则独立;根据实际情况直接判定其独立性 典型例题例1某商场推出二次开奖活动,凡购买一
16、定价值的商品可以获得一张奖券奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动如果两次兑奖活动的中奖概率都是,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码变式:两次都没有抽到指定号码的概率是多少? 思考:二次开奖至少中一次奖的概率是一次开奖中奖概率的两倍吗?例2下列事件中,哪些是互斥事件,哪些是相互独立事件?(1)“掷一枚硬币,得到正面向上”与“掷一枚骰子,向上的点是点”;(2)“在一次考试中,张三的成绩及格”与“在这次考试中李四的成绩不及格”;(3)在一个口袋内有白球、黑球,则“从中任意取个球得到白球”与“从
17、中任意取个得到黑球” 动手试试练1天气预报,在元旦假期甲地的降雨概率是,乙地的降雨概率是,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲、乙两地都降雨的概率;(2)甲、乙两地都不降雨的概率;(3)其中至少一个地方降雨的概率 练2某同学参加科普知识竞赛,需回答个问题竞赛规则规定:答对第一、二、三问题分别得分、分、分,答错得零分假设这名同学答对第一、二、三个问题的概率分别为,且各题答对与否相互之间没有影响(1)求这名同学得分的概率;(2)求这名同学至少得分的概率三、总结提升 学习小结1相互独立事件的定义;2相互独立事件与互斥事件、对立事件的区别课后练习与提高 当堂检测(时
18、量:5分钟 满分:10分)计分:1. 甲打靶的命中率为,乙的命中率为,若两人同时射击一个目标,则都未中的概率为( )A B C D2有一道题,三人独自解决的概率分别为,三人同时独自解这题,则只有一人解出的概率为 ( ) A B C D 3同上题,这道题被解出的概率是( )A B C D 4已知与是相互独立事件,且,则 5有件产品,其中件次品,从中选项取两次:(1)取后不放回,(2)取后放回,则两次都取得合格品的概率分别为 、 课后作业 1一个口袋内装有个白球和个黑球,那么先摸出个白球放回,再摸出1个白球的概率是多少?2甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 导学案 15
限制150内