基于机器视觉的表面缺陷检测系统设计_毕业设计(27页).doc
《基于机器视觉的表面缺陷检测系统设计_毕业设计(27页).doc》由会员分享,可在线阅读,更多相关《基于机器视觉的表面缺陷检测系统设计_毕业设计(27页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基于机器视觉的表面缺陷检测系统设计_毕业设计-第 20 页编号 本科生毕业设计基于机器视觉的表面缺陷检测系统设计Surface defect detection system design based on machine vision学 生 姓 名专 业电子信息工程学 号指 导 教 师学 院电子信息工程学院二一三年六月毕业设计(论文)原创承诺书1本人承诺:所呈交的毕业设计(论文) 基于机器视觉的表面缺陷检测系统设计,是认真学习理解学校的长春理工大学本科毕业设计(论文)工作条例后,在教师的指导下,保质保量独立地完成了任务书中规定容,不弄虚作假,不抄袭别人的工作内容。2本人在毕业设计(论文)中
2、引用他人的观点和研究成果,均在文中加以注释或以参考文献形式列出,对本文的研究工作做出重要贡献的个人和集体均已在文中注明。3在毕业设计(论文)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。4本人完全了解学校关于保存、使用毕业设计(论文)的规定,即:按照学校要求提交论文和相关材料的印刷本和电子版本;同意学校保留毕业设计(论文)的复印件和电子版本,允许被查阅和借阅;学校可以采用影印、缩印或其他复制手段保存毕业设计(论文),可以公布其中的全部或部分内容。以上承诺的法律结果将完全由本人承担!作 者 签 名: 年 月 日中文摘要为了不断提高产品质量和生产效率,金属工件表面缺陷在线自动检测技术在
3、生产过程中显得日益重要。针对金属工件表面的多种缺陷,本文设计了一套基于机器视觉能够实现对金属工件表面缺陷进行实时在线、无损伤的自动检测系统。该系统采用面阵CCD和多通道图像采集卡作为图像采集部分,提高了检测系统的速度并降低了对CCD的性能要求,使系统在现有的条件下比较容易实现实时在线检测;采用自动选取图像分割阈值,根据实际应用的阈值把工件信息从图像中提取出来并扫描工件图像中的信息,实现了系统的自动测量;根据扫描得到的工件信息去除掉工件边缘的光圈,利用自动选取的阈值对金属工件表面的图像进行二值化分割,从而实现各种缺陷的自动提取及识别。关键词:机器视觉 表面缺陷 CCD 图像处理 缺陷检测Abst
4、ractIn order to continually promote the quality of product and efficiency of production, the on-line automatic inspection technology of surface defect of metal workpiece has become more and more important in the process of production. This paper designs an automatic system based on machine vision, w
5、hich can inspect surface defect of metal workpiece timely without any damage on it. Firstly, using CCD and multi-channel image acquisition card to acquire images, the system has accelerated the inspection speed and reduced the requirements of CCD on the performance to do the timely on-line inspectio
6、n more easily under the current condition; secondly, according to the practical application of threshold, the system has used the segmentation threshold of selecting an image automatically to select the workpiece information from images and scan that information to realize the automatic measurement
7、of the system; finally, the system has removed the aperture on the edge of workpiece in accordance with the workpiece information of scan and conducted the binarization segmentation on the image of the metal workpiece surface by using the automatic selection threshold to automatically select and ide
8、ntify varied defects.Keywords: machine vision; surface defect; CCD; image processing; defect inspecting目 录中文摘要IAbstractII第1章 引言11.1研究背景及意义11.2国内外研究现状1第2章 图像技术及机器视觉简介32.1图像处理技术32.1.1图像和数字图像32.1.2图像技术和图像工程32.2数字图像处理系统42.2.1图像处理和分析系统42.2.2图像采集模块42.2.3图像的数据编码和传输52.3机器视觉技术52.3.1机器视觉技术简介52.3.2机器视觉系统的概念、组成
9、及特点62.4机器视觉系统的应用及发展动向72.4.1机器视觉检测应用72.4.2机器视觉系统的发展动向7第3章 系统总体设计93. 1 CCD摄像头93. 2图像采集卡93.2.1视频输入信号及采样频率103.2.2视频输入窗口和显示窗口103. 3软件设计10第4章 缺陷检测软件设计114. 1图像实时采集模块114. 2图像预处理模块114. 3阈值选取模块124. 4图像测量模块124. 5缺陷检测模块194.5.1二值图像区域标记214.5.2二值图像的小区域消除224. 6缺陷识别模块22第5章 实验结果及分析255.1实验数据255.2实验分析26全文总结29参考文献30致 谢3
10、2第1章 引言1.1研究背景及意义传统的产品表面质量检测主要采用人工检测的方法。人工检测不仅工作量大,而且易受检测人员主观因素的影响,容易对产品表面缺陷造成漏检,尤其是变形较小、畸变不大的夹杂缺陷漏检,极大降低了产品的表面质量,从而不能够保证检测的效率与精度。近年来,迅速发展的以图像处理技术为基础的机器视觉技术恰恰可以解决这一问题。机器视觉主要是采用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。基于机器视觉技术的缺陷检测系统,由于其非接触检测测量,具有较高的准确度、较宽的光谱响应范围,可长时间稳定工作,节省大量劳动力资源,极大地提高了工
11、作效率。可对工件表面的斑点、凹坑、划痕、色差、缺损等缺陷进行检测。所以,人工检测难以达到降低消耗、提高产品质量的目的,采用机器视觉的表面缺陷检测成为迫切需要。针对这种现状,课题组决定自行开发工件表面缺陷在线检测系统,确保各类缺陷及时准确检出,从根本上解决人工检测效率低、精度低的问题,同时,还可以降低原材料消耗、能耗和人力成本,该课题还可以推广到其他需要表面质量检测的行业中,如印刷、包装等行业,因此具有重要的实际应用价值和现实意义。然而,本课题要对各种形状、不同大小的金属片在线检测,必然对检测方法和处理速度有很高的要求,图像处理与模式识别领域中的许多新算法目前很难应用到实际工程项目中。因此,机器
12、视觉技术在这类在线检测任务中的应用,仍然是一个难题。本论文的目标就是以己有的图像处理理论为基础,通过大量的实际实验,设计适合本产品表面缺陷检测的算法。1.2国内外研究现状 在国外,机器视觉的应用主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备,单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元器件成型设备、电子工模具。机器视觉系统还
13、在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。除此之外,机器视觉还用于其他各个领域。而在中国,以上行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致以上各行业的应用几乎空白,即便是有,也只是低端方面的应用。目前在我国随着配套基础建设的完善,技术、资金的积累、各行各业对采用图像和机器视觉技术的工业自动化、智能化需求开始广泛出现,国内有关大专院校、研究所和企业近两年在图像和机器视觉技术领域进行了积极思索和大胆的尝试,逐步开始了工业现场的应用。其主要应用于制药、印刷、矿泉水瓶盖检测等领域。真正高端的应用还很少,因此,以上相关行业的应用空间还比较大。当
14、然,其他领域如指纹检测等等领域也有着很好的发展空间。第2章 图像技术及机器视觉简介2.1图像处理技术机器视觉系统中,视觉信息的处理技术主要依赖于图像处理方法,它包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。2.1.1图像和数字图像从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。图像对我们并不陌生。它是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体。人的视觉系统就是一
15、个观测系统,通过它得到的图像就是客观景物在人眼中形成的影像。图像信息不仅包含光通量分布,而且也还包含人类视觉的主观感受。随着计算机技术的迅速发展,人们还可以人为地创造出色彩斑斓、千姿百态的各种图像。客观世界在空间上是三维(3-D)的,但一般从客观景物得到的图像是二维(2-D)的。一幅图像可以用一个2-D数组(x,y)来表示,这里x和y表示2-D空间XY中一个坐标点的位置,而代表图像在点(x,y)的某种性质F的数值。例如常用的图像一般是灰度图,这时表示灰度值,它常对应客观景物被观察到的亮度值。常见图像是连续定义的,即、x、y的值可以是任意实数。为了能用数字计算机对图像进行加工处理,需要把连续的图
16、像在坐标空间XY和性质空间F都进行离散化。这种离散化了的图像就是数字图像,可以用I(r,c)来表示。这里I代表离散化后的,(r,c)代表离散化后的(x,y),这里I、e、r的值都是整数。本文以后主要讨论数字图象,依据我们的习惯用(x,y)代表数字图像,、x、y都在整数集合中取值。2.1.2图像技术和图像工程图像技术在广义上是各种与图像有关的技术的总称。目前人们主要研究的是数字图象,主要应用的是计算机图像技术。这包括利用计算机和其它电子设备进行和完成的一系列工作,例如图像的采集、获取、编码、存储和传输,图像的合成和产生,图像的显示和输出,图像的变换、增强、恢复(复原)和重建,图像的分割,目标的检
17、测、表达和描述,特征的提取和测量,序列图像的校正,3-D景物的重建复原,图像数据库的建立、索引和抽取,图像的分类、表示和识别,图像模型的建立和匹配,图像和场景的解释和理解,以及基于它们的判断决策和行为规划等等。另外,图像技术还可包括为完成上述功能而进行的硬件设计及制作等方面的技术由于图像技术近年来得到极大的重视和长足的进展,出现了许多新理论、新方法、新算法、新手段、新设备。图像工作者普遍认为需对图像和图像处理技术进行综合研究和应用,这个工作的框架就形成了图像工程。图像工程学科是将数学、光学等基础科学的原理,结合在图像应用中积累的技术经验而发展起来的。图像工程的内容非常丰富,根据抽象程度和研究方
18、法等的不同可分为三个层次:图象处理、图象分析和图像理解。图象处理着重强调在图像之间进行的变换。图象分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像理解的重点是在图象分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。由上所述,图象处理、图象分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。图象处理是比较低层的操作,它主要在图像像素级别上进行处理,处理的数据量非常大。图象分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。
19、图像理解主要是高层操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理可以有许多类似之处。2.2数字图像处理系统2.2.1图像处理和分析系统一个基本的图像(处理和分析)系统构成的各模块都有特定的功能,分别是采集、显示、存储、通信、处理和分析。为完成各自的功能每个模块都需一些特定的设备。图像采集可采用CCD的照相机、带有视像管的视频摄像机和扫描仪等。图象显示可用电视显示器、随机读取阴极射线管和各种打印机等。图像存储可采用磁带、磁盘、光盘和磁光盘等。图像通信可借助综合业务网、计算机局网,甚至普通电话网等。最后,图象处理和分析主要是运算,所使用的设备主要是计算机。以下对各模
20、块的简介。2.2.2图像采集模块采集数字图象需要两种装置。一种是对某个电磁能量谱波段敏感的物理器件,它能产生与所接受到的电磁能量成正比的模拟电信号。另一种称为数字化器,它能将上述模拟电信号转化为数字离散的形式。下面介绍这两种装置的常用器件。固态阵列是由称为感光基元的离散硅成像元素构成的。这样的感光基元能产生与所接受的输入光强成正比的输出电压。固态阵列中主要元件是电荷藕合器件CCD。这个传感器由一行感光基元,两个定时的将感光基元中的内容传给传输寄存器的传输门,以及一个定时的将传输寄存器中的内容传给放大器的输出门构成。放大器输出的电压信号与感光基元行的内容成比例。电荷藕合平面阵列的工作原理与线阵相
21、似,但感光基元排列成一个矩阵形式并由传输门和平面扫描图像显示模块的结果主要用于显示给人看。对图象分析来说,分析的结果也可以解析系统的主要显示设备是电视显示器。输入显示器的图象也可以通过硬拷控制。在每个偏转位置,电子枪束的强度的一种简便方法是利用标准输寄存器隔开。先将奇数列感光基元的内容顺序送进垂直传输寄存器,然后再送进水平传输寄存器。把水平传输寄存器的内容送进放大器就得到1帧隔行的视频信号。对偶数列感光基元重复以上过程就可得到另1帧隔行的视频信号。将2帧合起来就得到隔行扫描电视的1场()。现在常用的线扫描CCD一般有512到4096个象素或更多,而4096 X 4096个象素的扫描CCD也已在
22、使用。2.2.3图像的数据编码和传输数字图像的数据量是相当庞大的,一幅512 X 512个像素的数字图像的数据量为256K字节,若假设每秒传输25帧图像,则传输的信道速率为52.4M比特/秒。高信道速率意味着投资高普及难度。因此,传输过程中,对图像数据进行压缩显得非常重要。数据的压缩主要通过图像数据的编码和变换压缩完成。图像数据编码一般采用预测编码,即将图像数据的空间变化规律和序列变化规律用一个预测公式表示,如果知道了某一像素的前面各相邻像素值之后,可以用公式预测该像素值。采用预测编码,一般只需传输图像数据的起始值和预测误差,因此可将8比特/像素压缩到2比特/像素。变换压缩方法是将整幅图像分成
23、一个个小的(取8 X 8或16 X 16)数据块,再将这些数据块分类、变换、量化,从而构成自适应的变换压缩系统。该方法可将一幅图像的数据压缩到为数不多的几十个特传输,在接收端再变换回去即可。对图像的处理和分析一般可用算法的形式描述,而大多数的算法可以用软件实现,只有在为了提高速度或克服通用计算机限制的情况下才用特制的硬件。进入90年代尤其是21世纪后,人们设计了各种与工业标准总线兼容的可以插入微机或工作站的图像卡。这不仅减少了成本,也促进了图象处理和分析专用软件的发展。这些图像卡包括用于图象数字化和临时存储的图像采集卡,用于以视频速度进行算术和逻辑运算的算术逻辑单元,以及前面提到的帧缓存。图象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 机器 视觉 表面 缺陷 检测 系统 设计 毕业设计 27
限制150内