高中数学动点轨迹问题专题讲解(14页).doc
《高中数学动点轨迹问题专题讲解(14页).doc》由会员分享,可在线阅读,更多相关《高中数学动点轨迹问题专题讲解(14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学动点轨迹问题专题讲解-第 14 页动点轨迹问题专题讲解一专题内容:求动点的轨迹方程实质上是建立动点的坐标之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉 (2)定义法:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程 (3)转移代入法:如果所求轨迹上的点是随另一个在已知曲线:上的动点的变化而变化,且能用表示
2、,即,则将代入已知曲线,化简后即为所求的轨迹方程 (4)参数法:选取适当的参数(如直线斜率等),分别求出动点坐标与参数的关系式,得出所求轨迹的参数方程,消去参数即可 (5)交轨法:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系) 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线!二相关试题训练(一)选择、填空题1( )已知、是定点,动点满足,则动点的轨迹是 (A)椭圆 (B)直线 (C)圆 (D)线段2( )设,的周长为36,则的顶点的轨迹方程是(A)() (B)()(C)() (D)()3与圆外切,又与轴相切的圆的圆心
3、轨迹方程是 ;4P在以、为焦点的双曲线上运动,则的重心G的轨迹方程是 ;5已知圆C:内一点,圆C上一动点Q, AQ的垂直平分线交CQ于P点,则P点的轨迹方程为 6ABC的顶点为、,ABC的内切圆圆心在直线上,则顶点C的轨迹方程是 ;()变式:若点为双曲线的右支上一点,、分别是左、右焦点,则的内切圆圆心的轨迹方程是 ;推广:若点为椭圆上任一点,、分别是左、右焦点,圆与线段的延长线、线段及轴分别相切,则圆心的轨迹是 ;7已知动点到定点的距离比到直线的距离少1,则点的轨迹方程是8抛物线的一组斜率为的平行弦的中点的轨迹方程是 9过抛物线的焦点作直线与抛物线交于P、Q两点,当此直线绕焦点旋转时,弦中点的
4、轨迹方程为 解法分析:解法1 当直线的斜率存在时,设PQ所在直线方程为与抛物线方程联立,消去得设,中点为,则有消得 当直线的斜率不存在时,易得弦的中点为,也满足所求方程故所求轨迹方程为解法2设,由得,设中点为,当时,有,又,所以,即当时,易得弦的中点为,也满足所求方程故所求轨迹方程为10过定点作直线交抛物线于A、B两点, 过A、B分别作抛物线C的切线交于点M, 则点M的轨迹方程为_(二)解答题1一动圆过点,且与圆相内切,求该动圆圆心的轨迹方程(定义法)2过椭圆的左顶点作任意弦并延长到,使,为椭圆另一顶点,连结交于点,求动点的轨迹方程(直接法、定义法;突出转化思想)3已知、是椭圆的长轴端点,、是
5、椭圆上关于长轴对称的两点,求直线和的交点的轨迹(交轨法)4已知点G是ABC的重心,在轴上有一点M,满足(1)求点C的轨迹方程;(2)若斜率为的直线与点C的轨迹交于不同两点P、Q,且满足,试求的取值范围解:(1)设,则由重心坐标公式可得 ,点在轴上, ,即 故点的轨迹方程为()(直接法)(2)设直线的方程为(),、,的中点为由消,得 ,即 又, , , ,即 , ,又由式可得 , 且 且,解得且故的取值范围是且5已知平面上两定点、,为一动点,满足()求动点的轨迹的方程;(直接法)()若A、B是轨迹上的两动点,且过A、B两点分别作轨迹的切线,设其交点为,证明为定值解:()设由已知,,,3分整理,得
6、 即动点的轨迹为抛物线,其方程为6已知O为坐标原点,点、,动点、满足(),求点M的轨迹W的方程 解:, MN垂直平分AF又, 点M在AE上, 点M的轨迹W是以E、F为焦点的椭圆,且半长轴,半焦距, 点M的轨迹W的方程为()7设,为直角坐标系内轴正方向上的单位向量,若向量, 且(1)求点的轨迹的方程;(定义法)(2)过点作直线与曲线交于、两点,设,是否存在这样的直线,使得四边形是矩形?若存在,求出直线的方程,若不存在,试说明理由解:(1);(2)因为过轴上的点若直线是轴,则两点是椭圆的顶点,所以与 重合,与四边形是矩形矛盾故直线的斜率存在,设方程为,由 消得此时恒成立,且,所以四边形是平行四边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 轨迹 问题 专题 讲解 14
限制150内