基于数据挖掘的校园社交网络用户行为分析毕业设计论文(28页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《基于数据挖掘的校园社交网络用户行为分析毕业设计论文(28页).doc》由会员分享,可在线阅读,更多相关《基于数据挖掘的校园社交网络用户行为分析毕业设计论文(28页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基于数据挖掘的校园社交网络用户行为分析毕业设计论文-第 26 页1 绪论1.1 选题背景社交网络,简称SNS(social network service),在Web2.0浪潮中已发展为社会化媒体中一个主要平台。据最新的中国互联网络信息中心(CNNIC)2013年1月15 日发布的第31次中国互联网络发展状况统计报告,截至2012年12月底,我国网民规模达5.64亿,互联网普及率为42.1%,较2011年底提升3.8个百分点。同时报告显示,社交网络应用持续呈现增长趋势,截止2012年12月,国内社交网络用户总数已达2.75亿,占到了全部网民人数的48.8%,增速保持在10%以上。与此同时在2
2、010年之后社交网络又出现两大新增长点:其一微博用户持续增长,微博用户规模在2012年达到3.09亿,较2011年底增长了5873万。虽然微博急速扩张的阶段已经结束,但年增幅仍能达到23.5%;其二用户逐渐移动化成为了社交网络用户增长的又一亮点,截至2012年12月底,我国手机网民规模为4.2亿,较上年底增加约6440万人,网民中使用手机上网的人群占比由上年底的69.3%提升至74.5%,随着手机智能化,相当一部分用户访问和发送微博的行为发生在手机终端上,为社交网站的进一步发展提供了可能。此外“社交化”已经作为一种重要的功能元素,正在全面融合到各类互联网应用中。一方面,2012年涌现出大批具备
3、社交基因的新应用,包括图片社交、私密社交、购物分享等,尤其在移动互联网领域,由于手机天生的通讯功能,2012年许多热门移动应用都具备社交功能;另一方面,搜索、网购、媒体等互联网应用正在融合社交因素,以丰富自身的功能、提升用户体验,创新服务和盈利模式。在整个互联网都走向社交化的大趋势下,传统的实名制社交网站也不断增加平台功能,在原有网站基础上融入以上新型的社交功能组件,尤其是将业务发展重点转向移动终端,进而带动了2012年社交网站用户增长,同时也为社交网络的进一步发展提供无限可能。现行网络中较为成熟和流行的社交网站有国外的Facebook,twitter,Google+,Plurk,Flickr
4、,Linkedin等,而国内也不乏人人网、开心网、豆瓣、新浪微博、腾讯微博等社交网络应用或网站。社交网站具有巨大的用户群和访问量,并早已成为网络上极其重要的组成部分。其中Facebook每月活跃人士已超过7.5亿,根据股价估值也已接近千亿级别,已经成为互联网新巨头之一。而在国内的SNS中,人人网注册人数也已经超过1.6亿,活跃用户也超过了一半,国内互联网巨头阿里巴巴更是出资5.86亿美元购得新浪微博18%股份,表现了其对社交网络发展的看好2。来自市场研究机构eMarketer的最新数据显示:在2012年,全球超过14亿人使用社交网络,比2011年增加了19%。图1-1 社交网站发展时间表1.2
5、 研究意义社交网络的流行不仅带来了信息传播技术的革命性变革,并且一步步改变着人们的生活方式、思维方式等,对于社交网络的研究也不断深入。但目前对于社交网络的主体网络用户的行为研究仍然比较冷门,主要研究都偏向于网络用户行为研究,很少有专门对于社交网络用户行为的分析化。目前,社会科学对网络行为的研究,主要集中在以下议题:l 作为行为场域的网络空间的社会特性l 网络行为及其影响因素虽然以上研究都已比较深入,但大多的都从社会学角度切入研究宏观网络用户行为,内容与社交网络契合较少并偏向理论化,方法也大多采用问卷调查等主观性较强的方式,很少有通过技术手段采集客观数据并通过软件分析等方式进行研究的文献。而本文
6、则通过网络爬虫采集相关数据,并通过数据分析软件Weka对采集数据进行数据挖掘,通过数据寻找社交网络用户行为及其影响因素,可以说是从一个比较新颖的角度分析了社交网络用户行为。如果能够有效的提取社交网络中的各种数据并对用户行为、群体特征等进行分析,掌握用户的行为模式及其影响因素,不仅能够帮助网站运营商全面掌握用户需求从而提供更好的服务和产品,还能够帮助营销商更好地了解受众群体和信息传播模式进而采取更有效的网络营销和推广手段。1.3 论文主要研究内容及组织结构1.3.1主要研究内容本论文研究内容主要包括一下三个方面:l 社交网络及社交网络用户行为 该部分主要是为最终通过分析软件对社交网络用户行为进行
7、总结做好理论基础准备。主要对社交网络概念产生、发展过程进行阐述。并对社交网络更加具有WEB2.0时代的特点进行描述。最后对一般社交网络用户行为动机进行分析。l 数据挖掘中的聚类分析这一部分主要对数据挖掘的聚类分析的定义、分析过程以及主要分析手段进行描述,并分析各聚类方法优缺点,最后通过根据收集所得数据特征选取合适的聚类分析方法l 数据采集技术网络爬虫该部分主要确定所要爬取的网页内容,并根据网站HTTP协议与网页行为特征制定定向网页爬虫方案,然后通过python语言实行具体编码。编码过程主要分为两步,首先通过使用Wireshark抓包后使用python中的urlllib库构造目标网站可识别HTT
8、P协议,然后通过设计正则表达式进行数据提取。1.3.2论文组织结构论文第二章主要讨论了社交网络定义与特点,并对一般社交网络用户行为动机进行分析。同时对数据挖掘中的聚类分析定义、过程以及主要方法进行描述,阐明了本文所涉及的理论基础。论文第三章对于如何通过网络爬虫技术进行数据采集进行了说明。首先介绍了网络爬虫技术的原理与URL存在形态,然后分析了如何制定定向网络爬虫,最后说明了本次网络爬虫程序编码所解决的难题与部分具体代码。论文第四章对所收集数据进行预处理,并通过Weka数据挖掘软件对数据进行聚类分析,并对所获结果做出解释。论文最后对整个研究过程进行总结并分析了所存在的不足之处以及对未来进一步研究
9、的展望。2 关键技术和理论基础综述2.1 社交网络2.1.1 社交网络的概念社交网络一词最早是1954年由J. A. Barnes 首先使用。一个社交网络的大小最大约为150人左右 (Dunbars number)3,平均大小约为124人左右 (Hill and Dunbar, 2002),它是指社会行动者及其间关系的集合,在上世纪90年代之前这一词语主要在管理学、社会学等领域应用。但是随着互联网的发展以及六度空间理论和邓巴数字等理论的兴起4,社交网络逐渐被赋予了新的定义,首先出现的是网络社交。网络社交是伴随着电子邮件的出现产生的,它解决了信息点对点的传送。而BBS则把网络社交又向前推进了一步
10、:从单纯的点对点交流的成本降低,推进到了点对面交流成本的降低。随后产生的即时通信(IM)和博客(Blog)更像是前面两个社交工具的升级版本,前者提高了即时效果(传输速度)和同时交流能力(并行处理);后者则开始体现社会学和心理学的理论信息发布节点开始体现越来越强的个体意识,因为在时间维度上的分散信息开始可以被聚合,进而成为信息发布节点的“形象”和“性格”,随着网络社交的悄悄演进,一个人在网络上的形象更加趋于完整,这时候符合我们现在定义的社交网络出现了。现在社交网络也被称作社交网络服务(Social Network Service),简称SNS,也就是社交+网络+应用服务的意思5。它通过网络这一载
11、体把人们连接起来,从而形成具有某一特点的团体。社交网络含义包括硬件、软件、服务及应用,狭义上讲它是指建立在真实人际关系基础上的网络平台,是作为现实中的社会团体在互联网上交流的辅助工具而存在,是现实活动的在线拓展,与传统的虚拟网络有很大的不同。从这个定义上讲,符合“真实人际关系及其衍生”的SNS主要有Facebook,LinkedInGoogle+以及国内的人人网、开心网等。广义上,一般会把微博、空间、社交网站等都称为“社交网络”,如图21所示这其中包括了一些完全虚拟网络,如微博、Flicker等它们脱离社会现实,结构相对无序、混乱。而狭义上的社交网络,如Facebook,是现实人际网络的子集及
12、其衍生,具有现实生活中人际网络特征,同时国内大多数媒体所指的SNS也一般即为社交网站(Social Network Sites),而并非社会性网络服务(Social Networking Services)。基于如此本文对社交网络的研究是基于狭义上的社交网络将选取国内的社交网络服务网站人人网为数据来源。图2-1 基于人际关系的社交网站分类2.1.2 社交网络特点与传统网络类型相比,在WEB2.0时代发展起来的社交网络主要呈现出以下特点:l 人际传播回归和社交网络关系化正如“电话代替不了握手”一样,网络上具有时并不能带来人们内心的亲切感和信任感。为避免网络这种上具性特征带来的弊端,社交网络正在向
13、人际传播回归,它以现实社会关系为基础,模拟或重建现实社会的人际关系网络。来提高社会交往的质量和效度。l 以用户为中心这也是web2.0的特征,那些过去被轻视、被忽略的“微内容”、“微价值”由于新的聚合力量而显得格外强大。社交网络的UGC(用户生成内容)力量是惊人的,它使得每个人都有一种参与感,让每个人都可以创造自己的媒体。l 虚拟社交与真实社交的融合 社交网络已经弱化了早期网络社区那种娱乐和游戏功能,每个用户都只有一个身份识别,只有紧贴这个身份才能使用和拓展其他功能,它鼓励用户以真实身份、形象加入网络群体,保持线上线下身份一致性,以此来构建社会化的关系服务网络l 私人空间与公共空间的有机结合如
14、果说传统的BBS是一个公共场所,而博客又是一个相对单纯的私人空间, 社交网络则是两者的有机结合,让用户对社区有归属感、认同感的同时又能够置身于社会公共网络中。2.1.3 社交网络用户行为动机l 维持人际关系和传统网络媒体不同的是用户使用社交网络最主要的原因是为了维持人际关系。而在2000年Papacharissl和Rubin做出的关于网络总体使用动机的调查中6,维持人际关系是最次要的动机。之所以会出现如此大的反差,这也是由于SNS的真实性造成的。这也意味着更多的人们开始习惯于使用网络来维持和加强现实生活中的一部分人际关系,表明了SNS在现实生活中的重要性。l 参与互动,信息分享网络互动包括了和
15、朋友或者和陌生网友之间的一切互动行为。用户对别人发的帖子,上传的照片或者别的动态发表评论和意见,或者接受别人对自己发表内容的反馈。除此以外,信息分享成为社交网站用户的主要动机也反映了科技给媒体行为带来的变化。以人和的关系为基础而建立的社交网站,使信息的分享变得更加容易和自然,从而便利了用户之间的分享和交流。l 娱乐消遣娱乐消遣一直以来都是用户使用媒体的主要动机,而对于社交网站用户来说,也是仅此于人际关系维持的第二大动机。玩SNS网站上的网页游戏也是不少人每天登陆社交网站的动力。在这一分类中,娱乐消遣既是行为,也是动机。2.1.4 社交网络主要研究方向目前社交网络主要有四个研究方向,本文主要关心
16、社交网络挖掘技术的发展l 基础结构研究社交网络不同于普通的基础网络,是建立在真实人际关系基础上的,因此对网络的结构特点进行研究对于进一步推动网络的发展具有非常重要的意义。结构研究既包括简单的基础构造研究,例也包括异常复杂的特殊结构研究,主要包括度数中心性(Degree Centrality),亲近中心性(Closeness Centrality)和中介中心性(Betweenness Centrality)等等7。l 多层次关系的社区挖掘研究表明,在多层次社交网络的社区中。对于一种特定的需求下,不同的关系所产生的影响因子往往是不同的。所以应该根据特定的需求,对不同的关系进行线形组合,然后在此基础
17、上计算影响因子并进行社区挖掘。这个研究方向的重要意义在于传统的、单一的网络并不能反映现实中真实的人际关系,而采用多层,立体的网络结构建模使得数学模型更精确,更贴近真实人际网络,能得到更为客观有效的社区挖掘结果8。l 大规模网络的社区识别随着社交网络的发展,网络节点数已达到千万甚至上亿级别,传统CNM算法的局限性就越发明显。所以最近几年,有不少学者关注于大规模网络的社区挖掘技术,具有代表性算法如日本学者Ken Wakita和Toshiyuki Tsurumi所提出的KT识别技术9。l 网络挖掘技术在社交网络的理论研究中,另外一个重要的课题是挖掘技术的研究,挖掘技术的研究在语义网的研究中扮演了越来
18、越重要的角色。例如知识管理、 信息抽取、普氏计算等等。这个领域的研究大部分是利用搜索引擎来挖掘人际网络关系,最新的代表性技术是一种叫做POLYPHONET的社交网络抽取分析算法,该算法引入了一序列关于人际关系的识别,社区的挖掘,以及个人关键词挖掘等先进技术。目前,该领域的研究者主要关注如下两方面的问题,一是如何简化现有信息相关度的算法以使得整个衡量系统更易于整合,二是如何改进节点间的关系衡量算法,来加强对一些特定关系的衡量,例如个人和关键词相关度的计算,不同人际关系的分类等等10。2.2 网络用户行为2.2.1网络用户行为研究现状目前对于网络用户行为的研究主要集中于两方面:一是对网民的网络使用
19、行为,包括网络使用方式、时间、频率、地点等进行实证调查与定量研究。对此国内外都已进行了不少大规模调查,这类调查一般都将重点倾向于网民的网络使用习惯、倾向、网龄、上网频率、上网时间、上网动机等问题上。美国加州大学洛杉矶分校就于2000起启动了世界互联网项目(World Internet Project),通过对不同国家和地区网民的网络使用状况进行调查,从而对各国互联网的社会影响进行评估,其中子项目“中国互联网项目”由中国社科院进行调查,并连续多年发布相关报告。在国内,中国互联网信息中心自97年起针对我国互联网的宏观状况、网民行为意识等每年发布两次统计报告。二是对网民的行为模式、行为类型与行为逻辑
20、进行实证调查与理论分析。目前研究还是比较偏向于理论上的梳理与分析。在研究视角上基本延续了社会学的两种传统视角,或者将解释的焦点放在个人行为对社会结构的构建上,或者将解释的焦点放在社会结构对个人行为的制约上,主要分析的还是网络用户行为与人们在日常社会生活中的行为之间的区别,然后从这种区别中入手分析网络行为的实质与特征12。2.2.2本文对社交网络用户行为的定义本文对于社交网络用户行为的定义主要是指用户对于社交网站基本功能与用户生成内容(User Generated Content,简称UGC)的使用方式。主要包括网站访问、用户间互动交流、信息发布与分享、以及APP娱乐应用等,如图2-2所示:图2
21、-2 社交网络主要用户行为2.3 聚类分析2.3.1聚类定义特征聚类分析研究有很长的历史,其重要性及与其他研究方向的交叉特性多年来一直受到得到人们的肯定。聚类是数据挖掘、模式识别等研究方向的重要研究内容之一,在识别数据的内在结构方面具有极其重要的作用。聚类主要应用于模式识别中的语音识别、字符识别等,机器学习中的聚类算法应用于图像分割和机器视觉,图像处理中聚类用于数据压缩和信息检索。聚类的另一个主要应用是数据挖掘(多关系数据挖掘)、时空数据库应用(GIS等)、序列和异类数据分析等。此外,聚类还应用于统计科学。值得一提的是,聚类分析对生物学、心理学、考古学、地质学、地理学以及市场营销等研究也都有重
22、要作用13。从宏观上讲聚类是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。但目前对于聚类并无一个学术上的统一定义,这里使用出Everitt在1974年关于聚类所下的定义:一个类簇内的实体是相似的,不同类簇的实体是不相似的;一个类簇是测试空间中点的会聚,同一类簇的任意两个点间的距离小于不同类簇的任意两个点间的距离;类簇可以描述为一个包含密度相对较高的点集的多维空间中的连通区域,它们借助包含密度相对较低的点集的区域与其他区域(类簇)相分离14。2.3.2聚类分析过程l 数据准备:包括特征标准
23、化和降维l 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中。l 特征提取:通过对所选择的特征进行转换形成新的突出特征l 聚类:首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量而后执行聚类l 聚类结果评估:是指对聚类结果进行评估。评估主要分为外部有效。l 性评估、内部有效性评估和相关性测试评估2.3.3主要聚类分析方法由于多维数据集的复杂性,要求有不同的聚类方法对各种复杂数据类型进行分析。目前主要的聚类分析方法有以下几种:l 划分式聚类(partitioning methods)划分式聚类需要预先指定聚类数目或聚类中心,通过反复迭代运算,逐步降低目标函数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 数据 挖掘 校园 社交 网络 用户 行为 分析 毕业设计 论文 28
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内