八年级下数学压轴题及答案(25页).doc
《八年级下数学压轴题及答案(25页).doc》由会员分享,可在线阅读,更多相关《八年级下数学压轴题及答案(25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-八年级下数学压轴题及答案-第 19 页八年级下数学压轴题1已知,正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AHMN于点H(1)如图,当MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系: ;(2)如图,当MAN绕点A旋转到BMDN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图,已知MAN=45,AHMN于点H,且MH=2,NH=3,求AH的长(可利用(2)得到的结论)2如图,ABC是等边三角形,点D是边BC上的一点,以AD为边作等边ADE,过点C作CFDE交AB
2、于点F(1)若点D是BC边的中点(如图),求证:EF=CD;(2)在(1)的条件下直接写出AEF和ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由3(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE=45,请你利用(1)的结论证明:GE=BE+GD(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B=90,AB=BC,
3、E是AB上一点,且DCE=45,BE=4,DE=10,求直角梯形ABCD的面积4如图,正方形ABCD中,E为AB边上一点,过点D作DFDE,与BC延长线交于点F连接EF,与CD边交于点G,与对角线BD交于点H(1)若BF=BD=,求BE的长;(2)若ADE=2BFE,求证:FH=HE+HD5如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q探究:设A、P两点间的距离为x(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间
4、的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,PCQ是否可能成为等腰三角形?如果可能,指出所有能使PCQ成为等腰三角形的点Q的位置并求出相应的x值,如果不可能,试说明理由6RtABC与RtFED是两块全等的含30、60角的三角板,按如图(一)所示拼在一起,CB与DE重合(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将ABC绕点O顺时钟方向旋转到如图(二)中ABC位置,直线BC与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)7如图,在正
5、方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G(1)求证:ADECDE;(2)过点C作CHCE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由8在平行四边形ABCD中,BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若ABC=90,G是EF的中点(如图2),直接写出BDG的度数;(3)若ABC=120,FGCE,FG=CE,分别连接DB、DG(如图3),求BDG的度数9如图,已知ABCD中,DEBC于点E,DHAB于点H,AF平分BA
6、D,分别交DC、DE、DH于点F、G、M,且DE=AD(1)求证:ADGFDM(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想10如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M(1)求证:BFC=BEA;(2)求证:AM=BG+GM11如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积(3)求EF所
7、在的直线的函数解析式12已知一次函数的图象与坐标轴交于A、B点(如图),AE平分BAO,交x轴于点E(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BFAE,垂足为F,连接OF,试判断OFB的形状,并求OFB的面积(4)若将已知条件“AE平分BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BFAE,垂足为F设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域13如图,直线l1的解析表达式为:y=3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C(1)求点D的坐标;(2)求直线l2的解析表达式;(3
8、)求ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得ADP与ADC的面积相等,请直接写出点P的坐标14如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段ACCB的方向运动,当点P与点B重合时停止运动,运动时间为t秒(1)当点P经过点C时,求直线DP的函数解析式;(2)求OPD的面积S关于t的函数解析式;如图,把长方形沿着OP折叠,点B的对应点B恰好落在AC边上,求点P的坐标(3)点P在运动过程中是否存在使BDP为等腰三角形?若存在,请求出点P的
9、坐标;若不存在,请说明理由15如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(5,1),B(2,4),C(5,4),点D在第一象限(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边A1B1C1D1重叠部分的面积16如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边ABC,(1)求ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的
10、代数式表示四边形ABPO的面积,并求出当ABP的面积与ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由2018年06月17日梧桐听雨的初中数学组卷参考答案与试题解析一解答题(共16小题)1已知,正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AHMN于点H(1)如图,当MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图,当MAN绕点A旋转到BMDN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,
11、如果成立请证明;(3)如图,已知MAN=45,AHMN于点H,且MH=2,NH=3,求AH的长(可利用(2)得到的结论)【解答】解:(1)如图AH=AB(2)数量关系成立如图,延长CB至E,使BE=DNABCD是正方形,AB=AD,D=ABE=90,在RtAEB和RtAND中,RtAEBRtAND,AE=AN,EAB=NAD,DAN+BAN=45,EAB+BAN=45,EAN=45,EAM=NAM=45,在AEM和ANM中,AEMANMSAEM=SANM,EM=MN,AB、AH是AEM和ANM对应边上的高,AB=AH(3)如图分别沿AM、AN翻折AMH和ANH,得到ABM和AND,BM=2,D
12、N=3,B=D=BAD=90分别延长BM和DN交于点C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD设AH=x,则MC=x2,NC=x3,在RtMCN中,由勾股定理,得MN2=MC2+NC252=(x2)2+(x3)2(6分)解得x1=6,x2=1(不符合题意,舍去)AH=62如图,ABC是等边三角形,点D是边BC上的一点,以AD为边作等边ADE,过点C作CFDE交AB于点F(1)若点D是BC边的中点(如图),求证:EF=CD;(2)在(1)的条件下直接写出AEF和ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图),那么(1)中的结论是否仍然成立?若成立,请给出
13、证明;若不成立,请说明理由【解答】(1)证明:ABC是等边三角形,D是BC的中点,ADBC,且BAD=BAC=30,AED是等边三角形,AD=AE,ADE=60,EDB=90ADE=9060=30,EDCF,FCB=EDB=30,ACB=60,ACF=ACBFCB=30,ACF=BAD=30,在ABD和CAF中,ABDCAF(ASA),AD=CF,AD=ED,ED=CF,又EDCF,四边形EDCF是平行四边形,EF=CD(2)解:AEF和ABC的面积比为:1:4;(易知AF=BF,延长EF交AD于H,AEF的面积=EFAH=CBAD=BCAD,由此即可证明)(3)解:成立理由如下:EDFC,E
14、DB=FCB,AFC=B+BCF=60+BCF,BDA=ADE+EDB=60+EDBAFC=BDA,在ABD和CAF中,ABDCAF(AAS),AD=FC,AD=ED,ED=CF,又EDCF,四边形EDCF是平行四边形,EF=DC3(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE=45,请你利用(1)的结论证明:GE=BE+GD(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B=90,AB=BC,E是AB
15、上一点,且DCE=45,BE=4,DE=10,求直角梯形ABCD的面积【解答】(1)证明:四边形ABCD是正方形,BC=CD,B=CDF=90,ADC=90,FDC=90B=FDC,BE=DF,CBECDF(SAS)CE=CF (2)证明:如图2,延长AD至F,使DF=BE,连接CF由(1)知CBECDF,BCE=DCFBCE+ECD=DCF+ECD,即ECF=BCD=90,又GCE=45,GCF=GCE=45CE=CF,GC=GC,ECGFCGGE=GF,GE=GF=DF+GD=BE+GD (3)解:如图3,过C作CGAD,交AD延长线于G在直角梯形ABCD中,ADBC,A=B=90,又CG
16、A=90,AB=BC,四边形ABCG为正方形AG=BC(7分)DCE=45,根据(1)(2)可知,ED=BE+DG(8分)10=4+DG,即DG=6设AB=x,则AE=x4,AD=x6,在RtAED中,DE2=AD2+AE2,即102=(x6)2+(x4)2解这个方程,得:x=12或x=2(舍去)(9分)AB=12S梯形ABCD=(AD+BC)AB=(6+12)12=108即梯形ABCD的面积为108(10分)4如图,正方形ABCD中,E为AB边上一点,过点D作DFDE,与BC延长线交于点F连接EF,与CD边交于点G,与对角线BD交于点H(1)若BF=BD=,求BE的长;(2)若ADE=2BF
17、E,求证:FH=HE+HD【解答】(1)解:四边形ABCD正方形,BCD=90,BC=CD,RtBCD中,BC2+CD2=BD2,即BC2=()2(BC)2,BC=AB=1,DFDE,ADE+EDC=90=EDC+CDF,ADE=CDF,在ADE和CDF中,ADECDF(ASA),AE=CF=BFBC=1,BE=ABAE=1(1)=2;(2)证明:在FE上截取一段FI,使得FI=EH,ADECDF,DE=DF,DEF为等腰直角三角形,DEF=DFE=45=DBC,DHE=BHF,EDH=BFH(三角形的内角和定理),在DEH和DFI中,DEHDFI(SAS),DH=DI,又HDE=BFE,AD
18、E=2BFE,HDE=BFE=ADE,HDE+ADE=45,HDE=15,DHI=DEH+HDE=60,即DHI为等边三角形,DH=HI,FH=FI+HI=HE+HD5如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q探究:设A、P两点间的距离为x(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,PCQ是否可能成为等腰三角形?如果可能,指出所有能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学 压轴 答案 25
限制150内