数据标准化处理方法(4页).doc
《数据标准化处理方法(4页).doc》由会员分享,可在线阅读,更多相关《数据标准化处理方法(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数据标准化处理方法-第 4 页数据标准化处理方法 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。数据标准化的方法有很多种,常用的有“最小最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原
2、始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。一、Min-max 标准化 min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间0,1中的值x,其公式为: 新数据=(原数据-极小值)/(极大值-极小值) 二、z-score 标准化 这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x。 z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 标准化 处理 方法
限制150内