新课标高三数学第一轮复习单元讲座第10讲 空间中的平行关系(11页).doc
《新课标高三数学第一轮复习单元讲座第10讲 空间中的平行关系(11页).doc》由会员分享,可在线阅读,更多相关《新课标高三数学第一轮复习单元讲座第10讲 空间中的平行关系(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-新课标高三数学第一轮复习单元讲座第10讲 空间中的平行关系-第 11 页普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座10)空间中的平行关系一课标要求:1平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;公理2:过不在一条直线上的三点,有且只有一个平面;公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;公理4:平行于同一条直线的两条直线平行;定理:空间中如果两个角的两
2、条边分别对应平行,那么这两个角相等或互补。2空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;垂直于同一个平面的两条直线平行能运用已获得的结论证明一些
3、空间位置关系的简单命题。二命题走向立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。预测2007年高考将以多面体为载体直接考察线面位置关系:(1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步
4、为主。三要点精讲1平面概述(1)平面的两个特征:无限延展 平的(没有厚度)(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母、等表示,如平面、平面;用表示平行四边形的两个相对顶点的字母表示,如平面AC。2三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A,B,A,B公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。公理3:经过不在同一直线上的三点,有且只有一个平面。推论一:经过一条直线和这条直线外的一点,有且只有一个平面。推论二:经过两条相交直线,有且只有一个平面。
5、推论三:经过两条平行直线,有且只有一个平面。3空间直线:(1)空间两条直线的位置关系:相交直线有且仅有一个公共点;平行直线在同一平面内,没有公共点; 异面直线不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。异面直线的画法常用的有下列三种:(2)平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。即公理4:平行于同一条直线的两条直线互相平行。(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式:与a是异面直线。4直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且
6、只有一个公共点);(3)直线和平面平行(没有公共点)用两分法进行两次分类。它们的图形分别可表示为如下,符号分别可表示为,。线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式:5两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。定理的模式:推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条
7、相交直线,那么这两个平面互相平行。推论模式:(2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。四典例解析题型1:共线、共点和共面问题例1(1)如图所示,平面ABD平面BCD 直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形。试证明三直线BD 、MQ 、NP 共点。证明:四边形MNPQ 是梯形,且MQ 、NP 是腰,直线MQ 、NP 必相交于某一点O 。O 直线MQ ;直线MQ 平面ABD ,O 平面ABD。同理,O
8、 平面BCD ,又两平面ABD 、BCD 的交线为BD ,故由公理二知,O 直线BD ,从而三直线BD 、MQ 、NP 共点。点评:由已知条件,直线MQ 、NP 必相交于一点O ,因此,问题转化为求证点O 在直线BD 上,由公理二,就是要寻找两个平面,使直线BD 是这两个平面的交线,同时点O 是这两个平面的公共点即可“三点共线”及“三线共点”的问题都可以转化为证明“点在直线上”的问题。DCBAEFHG(2)如图所示,在四边形ABCD中,已知ABCD,直线AB,BC,AD,DC分别与平面相交于点E,G,H,F求证:E,F,G,H四点必定共线。证明:ABCD,AB,CD确定一个平面又ABE,AB,
9、E,E,即E为平面与的一个公共点。同理可证F,G,H均为平面与的公共点两个平面有公共点,它们有且只有一条通过公共点的公共直线,E,F,G,H四点必定共线。点评:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论。例2已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面。badcGFEAabcdHK图1图2证明:1o若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A,但Ad,如图1所示:直线d和A确定一个平面。又设直线d与a,b,c分别相交于E,F,G,则A,E,F,G。A,E,A,Ea,
10、a。同理可证b,c。a,b,c,d在同一平面内。2o当四条直线中任何三条都不共点时,如图2所示:这四条直线两两相交,则设相交直线a,b确定一个平面。设直线c与a,b分别交于点H,K,则H,K。又 H,Kc,c,则c。同理可证d。a,b,c,d四条直线在同一平面内点评:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内。本题最容易忽视“三线共点”这一种情况。因此,在分析题意时,应仔细推敲问题中每一句话的含义。题型2:异面直线的判定与应用例3已知:如图所示,a b a ,b b ,a b A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课标高三数学第一轮复习单元讲座第10讲 空间中的平行关系11页 新课 标高 数学 第一轮 复习 单元 讲座 10 空间 中的 平行 关系 11
限制150内