人工智能在计算机网络技术中的运用(28页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人工智能在计算机网络技术中的运用(28页).doc》由会员分享,可在线阅读,更多相关《人工智能在计算机网络技术中的运用(28页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人工智能在计算机网络技术中的运用-第 28 页人工智能在计算机网络技术中的运用人工智能在计算机网络技术中的运用摘要人工智能是研究使机器具备人所具有的智能功能的一门高新技术学科。其目的是模拟、延伸和扩展人的智能,以实现某些脑力劳动的自动化。实质化,它是开拓计算机应用、研制新一代计算机和扩展计算机应用领域的技术基础,也是探索人脑奥秘的重要科学途径。人工智能、原子能技术、空间技术,被称为20世纪的三大尖端科技。进入21世纪后,人工智能仍是适应信息时代需求的关键技术之一。自上世纪五十年代以来,经过了几个阶段的不断探索和发展,人工智能在模式识别、知识工程、机器人等领域已经取得重大成就,但是离真正意义上
2、的的人类智能还相差甚远。但是进入新世纪以来,随着信息技术的快速进步,与人工智能相关的技术水平也得到了相应的提高。尤其是随着因特网的普及和应用,对人工智能的需求,变得越来越迫切,也给人工智能的研究提供了新的更加广泛的舞台。定义人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是计算机学科的一
3、个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的
4、基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 AI的开端一般认为,人工智能的思想萌芽可以追溯到德国著名数学家和哲学家莱布尼茨(Leibnitz,1646-1716)提出的通用语言设想。这一设想的要点是:建立一种通用的符号语言,用这个语言中的符号表达“思想内容”,用符号之间的形式关系表达“思想内容”之间的逻辑关系。于是,在“通用语言”中可以实现“思维的机械化”这一设想可以看成是对人工智能的最早描述。计算机科学的创始人图灵被认为
5、是“人工智能之父”,他着重研究了一台计算机应满足怎样的条件才能称为是“有智能的”。1950年他提出了著名的“图灵实验”:让一个人和一台计算机分别处于两个房间里,与外界的联系仅仅通过键盘和打印机。由人类裁判员向房间里的人和计算机提问(比如:“你是机器还是人?”或“你是男人还是女人?”等等),并通过人和计算机的回答来判断哪个房间里是人、哪个房间里是计算机。图灵认为,如果“中等程度”的裁判员不能正确地区分,则这样的计算机可以称为是有智能的。“图灵实验”是关于智能标准的一个明确定义。有趣的是,尽管后来有些计算机已经通过了图灵实验,但人们并不承认这些计算机是有智能的。这反映出人们对智能标准的认识更深入、
6、对人 工智能的要求更高了。几乎在图灵上述工作的同时,冯诺依曼从生物学角度研究了人工智能。从生物学的观点看,智能是进化的结果,而进化的基本条件之一是“繁殖”。为此, 冯诺依曼构造了“自再生自动机”,这是一种有“繁殖”能力的数学模型。 冯诺依曼的分析表明, 自再生自动机的内容结构对于“繁殖”是充分的和必要的。他进而推测,这种结构必定存在于活的细胞之中。五年之后,克里克和沃森关于DNA结构的重大发现完全证实了冯诺依曼的猜测: 自再生自动机的几个功能模块均有生物学上的对应物。其中,模块A对应于核糖体,B对应于RND酶和DNA聚合酶,D对应于RNA和DNA,E对应于阻遏控制分子和抗阻遏控制分子等。 冯诺
7、依曼的工作为后来人工智能中的一条研究路线(人工生命)提供了重要的基础。图灵和冯诺依曼的上述工作,以及麦克考洛和匹茨对神经元网的数学模型的研究,构成了人工智能的初创阶段,这其实也是人工智能学习的开始。1956年夏天举行的达德茅斯研讨会,被认为是人工智能作为一门独立学科正式诞生的标志。这次研讨会聚集了来自数学、信息科学、心理学、神经生理学和计算机科学等不同领域的领导者,包括Minsky,Rochester, Simon, Solonio和Mccarthy等。其中,Miusky,Mccarthy,Newell和Simon后来被认为是美国人工智能界的“四大领袖”。与会者从不同角度搜索了使机器具有智能的
8、途径和方式,并决定用“人工智能”(Artificial Intelligence)一词来概括这一新的研究方向。达德茅斯研讨会开创了人工智能的第一个发展时期。在这个时期里,研究者们展开了一系列开创性工作,并取得了引人注目的成果。会后不久,Newell,Shaw和Simon完成了一个自动证明数学定理的计算机程序Logic Theorist (此前Martin和Davis曾编制了一个算术定理的证明程序,但未发表),证明了数学原理第二章中的38条定理,由此开创了人工智能中“自动定理证明”这一分支。1958年,美籍逻辑学家王浩在自动定理证明中取得的重要进展。他的程序在IBM704计算机上用不到5分钟的时
9、间证明了数学原理中“命题演算”的全部220条定理。1959年,王浩的改进程序用8.4分钟证明了上述220条定理及谓词演算的绝大部分定理。1983年,美国数学学会将自动定理证明的第一个“里程碑奖”授予王浩,以表彰他的杰出贡献(自动定理证明的“里程碑奖”每25年评选一次,由此可见其份量)。受王浩工作的鼓舞,自动定理证明的研究形成一股热潮。比如,Slagle的符号积分程序SAINT经测试已达到了大学生的积分演算水准;而Mosis的SIN程序的效率比SAINT提高了约三倍,被认为达到了专家水平。 自动定理证明的理论价值和应用范围并不局限于数学领域。事实上,很多问题可以转化为定理证明问题,或者与定理证明
10、有关。可以认为,自动定理证明的核心问题是自动推理,而推理在人的智能行为中起普遍性的重要作用。基于这一看法,在自动定理证明的基础上进一步研究通用问题求解,是一个值得探索的课题。从1957年开始,Newell,Shaw和Simon等人着手研究不依赖于具体领域的通用解题程序,称之为GPS,它是在Logic Theorist的基础上发展起来的,虽然后来的实践表明,GPS作为一个独立的求解程序,其能力是有限的,但在GPS中发展起来的技术对人工智能的发展有重要意义人工智能早期研究给人的深刻印象是博羿,1956年,Samnel研制了一个西洋跳棋程序,该程序“天生”下跳棋水平很低,远远不是Samuel的对手。
11、但它有学习能力,能从棋谱中学习,也能在实践中总结提高。经过三年的“学习”,该程序与1959年打败了Samuel;又经过三年,打败了美国一个州的冠军。值得注意的是,虽然下棋至多只能算是一项体育运动,下棋的程序似乎只是一种游戏程序,但Samuel工作的意义十分重大:它同时刺激了“搜索”和“机器学习”这两个人工智能重要领域的发展。 与自动定理证明的研究意义不限于数学一样,搜索的研究意义也不限于博弈。根据认知心理学的信息处理学派的观点,人类思维过程的很大一部分可以抽象为从问题的初始状态经中间状态到达终止状态的过程,因此可以转化为一个搜索问题,由机器自动地完成。例如“规划”问题。设想一台机器人被要求完成
12、一项复杂任务,该任务包含很多不同的子任务,其中某些子任务只有在另一些子任务完成之后才能进行。这时,机器人需要事先“设想”一个可行的行动方案,使得依照该方案采取行动可以顺利完成任务。“规划”即找出一个可行的行动案,可以通过以其子任务为状态、以其子任务间依赖关系为直接后继关系的状态空间中的搜索来实现。 人工智能的早期研究还包括自然语言理解、计算机视觉和机器人等等。通过大量研究发现,仅仅依靠自动推理的搜索等通用问题求解手段是远远不够的。Newell和Simon等人的认知心理学研究表明,各个领域的专家之所以在其专业领域内表现出非凡的能力,主要是因为专家拥有丰富的专门知识(领域知识和经验)。70年代中期
13、,Feigenbaum提出知识工程概念,标志着人工智能进入第二个发展时期。知识工程强调知识在问题求解中的作用;相应地,研究内容也划分为三个方面:知识获取,知识表示和知识利用。知识获取研究怎样有效地获得专家知识;知识表示研究怎样将专家知识表示成在计算机内易于存储、易于使用的形式;知识利用研究怎样利用已得到恰当表示的专家知识去解决具体领域内的问题。知识工程的主要技术手段是在早期成果的基础上发展起来的,特别是知识利用,主要依靠自动推理和搜索的技术成果。在知识表示方面,除使用早期工作中出现的逻辑表示法和过程表示法之外,还发展了在联想记忆和自然语言理解研究中提出的语义网表示法,进而引入了框架表示法,概念
14、依赖和脚本表示法以及产生式表示法等等各种不同方法。与早期研究不同,知识工程强调实际应用。主要的应用成果是各种专家系统。专家系统的核心部件包括: (a)表达包括专家知识和其他知识的知识库。 (b)利用知识解决问题的推理机。大型专家系统的开发周期往往长达10余年,其主要原因在于知识获取。领域专家虽然能够很好地解决问题,却往往说不清自己是怎么解决的,使用了哪些知识。这使得负责收集专家知识的知识工程师很难有效地完成知识获取任务。知识获取-机器学习研究的深入发展。已经得到较多研究的机器学习方法包括:归纳学习、类比学习、解释学习、强化学习和进化学习等等。机器学习的研究目标是:让机器从自己或“别人”的问题求
15、解经验中获取相关的知识和技能,从而提高解决问题的能力。80年代以来,随着计算机网络的普及,特别是Internet的出现,各种计算机技术包括人工智能技术的广泛应用推动着人机关系的重大变化。据日美等国未来学家的预测,人机关系正在迅速地从“以人为纽带”的传统模式向“以机为纽带”的新模式转变人机关系的这一转变将引起社会生产方式和生活方式的巨大变化,同时也向人工智能乃至整个信息技术提出了新的课题。这促使人工智能进入第三个发展时期。在这个新的发展时期中,人工智能面临一系列新的应用需求。代生产是一种社会化大生产,来自不同专业的工作者在不同或相同的时间、地点从事着同一任务的不同子任务。这要求计算机不仅为每一项
16、子任务提供辅助和支持,更需要为子任务之间的协调提供辅助和支持。由于各个子任务在很大程度上可以独立地进行,子任务之间的关系必然呈现出动态变化和难以预测的特点。于是,子任务之间的协调(即对分布协同工作的支持)向人工智能乃至整个信息技术以及基础理论提出了巨大的挑战。其次,网络化推进了信息化,使原本分散孤立的数据库形成一个互连的整体,即一个共同的信息空间。尽管现有的浏览器和搜索引擎为用户在网上查找信息提供了必要的帮助,这种帮助是远远不够的,以至于“信息过载”与“信息迷失”状况日益严重。更强大的智能型信息服务工具已成为广大用户的迫切需要。另一方面,信息空间对人类的价值不仅在于单独的信息条目(比如某厂家生
17、产出了某一新产品的信息),还远在于一大类信息中隐藏着的普遍性知识(比如某个行业供求关系的变化趋势)。于是,数据中的知识发现也成为一项迫切的研究课题。机器人始终是现代工业的迫切需求。随着机器人技术的发展,研究重点已经转向能在动态、不可预测环境中独立工作的自主机器人,以及能与其他机器人(包括人)协作的机器人。显然,这种机器人之间的合作可以看成是物理世界中的分布式协同工作,因而包括相同的理论和技术问题。由此可见,人工智能第三发展时期的突出特点是研究能够在动态、不可预测环境中自主、协调工作的计算机系统,这种系统被称为Agent 。目前,正围绕着Agent的理论、Agent的体系结构和Agent语言三个
18、方面展开研究,并已产生一系列重要的新思想、新理论、新方法和新技术。在这一研究中,人工智能呈现一种与软件工程、分布式计算以及通讯技术相互融合的趋势。Agent研究的应用不限于生产和工作,还深入到人们的学习和娱乐等各个方面。例如,Agent与虚拟现实相结合而产生的虚拟训练系统,可以使学生在不实际操纵飞机的情况下学飞行的基本技能;类似地,也可使顾客“享受”实战的“滋味”。 我国也先后成立中国人工智能学会、中国计算机学会人工智能和模式识别专业委员会和中国自动化学会模式识别与机器智能专业委员会等学术团体,开展这方面的学术交流。此外国家还着手兴建了若干个与人工智能研究有关的国家重点实验室,这些都将促进我国
19、人工智能的研究,为这一学科的发展作出贡献。综观人工智能学习的发展历程,可以看出它始终遵循的基本思路。首先是强调人类智能的人工实现而不是单纯的模拟,以便尽可能地为人类的实际需要服务。其次是强调多学科的交叉结合,数学、信息科学、生物学、心理学、生理学、生态学以及非线性科学等等越来越多的新生学科被融入到人工智能学习的研究之中。实际应用 机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。学科范畴 人工智能是一门边沿学科,属于自然科学和社会科学的交叉。涉及学科 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制
20、论,不定性论,仿生学,研究范畴 自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法 人类思维方式应用领域 智能控制,机器人学,语言和图像理解,遗传编程 机器人工厂安全问题 目前人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过。发展历程人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的Aristotle(亚里士多德)(前384-322),给出了形式逻辑的基本规律。英国的哲
21、学家、自然科学家Bacon(培根)(1561-1626),系统地给出了归纳法。“知识就是力量”德国数学家、哲学家Leibnitz(布莱尼兹)(1646-1716)。提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运 算和推理。做出了能做四则运算的手摇计算机英国数学家、逻辑学家Boole(布尔)(1815-1864)实现了布莱尼茨 的思维符号化和数学化的思想,提出了一种崭新的代数系统布尔代数。 第一阶段: 50 年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s 求解程序LISP表处理语言等。但由于消解法推理能力的有限,
22、以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。第二阶段: 60 年代末到70 年代,专家系统出现,使人工智能研究出现新高潮DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969 年成立了国际人工智能联合会议(International Joint Conferences onArtificial Intelligence 即IJCAI)。第三阶段: 80 年代,随着第五代计算机的研制,人工智能得到了很大
23、发展日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统K I P S”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。第四阶段: 80 年代末,神经网络飞速发展1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。第五阶段: 90 年代,人工智能出现新的研究高潮由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解
24、,将人工智能更面向实用。另外,由于Hopfield 多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。三大学派20世纪80年代到本世纪初人工智能研究形成了三大学派:随着人工神经网络的再度兴起和布鲁克()的机器虫的出现,人工智能研究形成了符号主义、连接主义和行为主义三大学派。符号主义学派是指基于符号运算的人工智能学派,他们认为知识可以用符号来表示,认知可以通过符号运算来实现。例如,专家系统等。连接主义学派是指神经网络学派,在神经网络方面,继鲁梅尔哈特研制出BP网络之后,1987年,首届国际人工神经网络学术大会在美国的圣迭戈(San-Dieg
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 计算机网络技术 中的 运用 28
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内