人教版高中数学必修2《立体几何初步》教材分析(9页).doc
《人教版高中数学必修2《立体几何初步》教材分析(9页).doc》由会员分享,可在线阅读,更多相关《人教版高中数学必修2《立体几何初步》教材分析(9页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人教版高中数学必修2立体几何初步教材分析-第 8 页人教版高中数学必修2立体几何初步教材分析一、课程标准关于立体几何初步的表述几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂
2、直的性质与判定,并对某些结论进行论证。学生还将了解一些简单几何体的表面积与体积的计算方法。内容与要求立体几何初步(约18课时)(1)空间几何体利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。 通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上
3、,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。(2)点、线、面之间的位置关系借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可作为推理依据的公理和定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。公理2:过不在一条直线上的三点,有且只有一个平面。公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。公理4:平行于同一条直线的两条直线平行。定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。以立体几何的上述定义、公理和定理为
4、出发点,通过直观感知、操作确认、思辩论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。一个平面过另一个平面的垂线,则两个平面垂直。通过直观感知,操作确认,归纳出以下性质定理,并加以证明。一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。垂直于同一个平面的两条直线平行。两个平面垂直
5、,则一个平面内垂直于交线的直线与另一个平面垂直。能运用已获得的结论证明一些空间位置关系的简单命题。说明与建议1、立体几何初步的教学重点是帮助学生逐步形成空间想象能力。本部分内容的设计遵循从整体到局部、具体到抽象的原则,教师应提供丰富的实物模型或利用计算机软件呈现的空间几何体,帮助学生认识空间几何体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,巩固和提高义务教育阶段有关三视图的学习和理解,帮助学生运用平行投影与中心投影,进一步掌握在平面上表示空间图形的方法和技能。2、几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言。教师可以使用具体的长方体的点、线、
6、面关系作为载体,使学生在直观感知的基础上,认识空间中一般的点、线、面之间的位置关系;通过对图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用问题。3、立体几何初步的教学中,要求对有关线面平行、垂直关系的性质定理进行证明;对相应的判定定理只要求直观感知、操作确认,在选修系列2中将用向量方法加以论证。4、有条件的学校应在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性质(包括证明)的教学提供形象的支持,提高学生的几何直观能力。教师可以指导和帮助学生运用立体几何知识选择课题,
7、进行探究。标准与原大纲比较,在要求上的主要变化有对于“空间几何体”:教学大纲要求:了解概念,掌握性质;课程标准则要求:认识柱、锥、台、球及简单组合体的结构特征。课程标准把重点放在了空间想像能力上,对概念、性质则降低了要求。对于“点、线、面之间的位置关系”:课程标准把重点放在了定性研究(平行和垂直)上,定量研究(角和距离)在必修中不作要求(移到选修中),对线、面垂直的判定定理不证明,移到空间向量中再证。分段设计,分层递进。对知识发生的过程提出了较高的要求:多处使用了“观察”、“认识”、“画出”、“直观感知、操作确认,归纳”等情感、态度与价值要求的行为动词。对空间几何体的要求是直观感知;对线、面关
8、系则要求操作确认、思辨论证;对判定定理的要求是操作确认、合情推理;对性质定理则要求思辨论证、逻辑推理。(4)不要求用反证法证明简单的问题。二、新老教材在教学内容、教学时间方面的对比新课标过渡教材A过渡教材B老教材空间几何体空间几何体的结构2棱柱4空间向量运算6多面体29空间几何体的三视图和直观图2棱锥4空间向量坐标运算3旋转体空间几何体的表面积与体积2阅读及研究性3棱柱棱锥5多面体和旋转体的体积实习作业和小结2球4阅读及研究性3球3点、直线平面之间的位置关系空间点、直线、平面之间的位置关系3平面3平面性质3平面28空间直线5空间平行直线与异面直线2空间两条直线平面平行的判定及其性质3线面平行的
9、判定和性质3线面平行面面平行2空间直线和平面直线、平面垂直的判定及其性质3线面垂直的判定和性质4线面垂直4空间两个平面实习作业和小结1面面平行的判定和性质3线面的角二面角3面面垂直的判定和性质3距离2小结与复习3小结与复习3合计18393957选修文科:推理与证明 10理科:空间向量与立体几何 12 推理与证明 8新课程教材和大纲教材处理的变化(1)从整体到局部、具体到抽象大纲教材 点、线、面 柱、锥、台、球;课标教材 柱、锥、台、球 点、线、面。(2)强调几何直观,合情推理与逻辑推理并重,适当渗透公理化思想。(3)螺旋上升,分层递进,逐步到位。(4)教学内容呈现上的变化。在内容呈现上,通过直
10、观感知、操作确认,获得几何图形的性质,并通过简单的推理发现、论证一些几何性质。教材在内容的设计上不是以论证几何为主线展开几何内容,而是先使学生在特殊情境下通过直观感知、操作确认,对空间的点、线、面之间的位置关系有一定的感性认识,在此基础上进一步通过直观感知、操作确认,归纳出有关空间图形位置关系的一些判定定理和性质定理,并对性质定理加以逻辑证明。不是不要证明,而是完善过程,既要发展演绎推理能力,也要发展合情推理能力。(4)教学内容增减:删除(或在选修课内体现的):异面直线所成的角的计算。直线与平面所成角的计算。三垂线定理及其逆定理。二面角及其平面角的计算。空间的距离及其计算。多面体及欧拉公式。原
11、教材中有4个公理,4个推论,14个定理(都需证明)(不包含以例题出现的定理)。新教材中有4个公理,9个定理(4个需证明)。增加:简单空间图形的三视图;专设“空间几何体的三视图和直观图”这一节,重点在于培养空间想像能力。台体的表面积和体积等内容。三、浙江省数学学科关于立体几何初步的教学指导建议第一章 空间几何体教学要求1.1空间几何体的结构基本要求1. 理解柱、锥、台、球的结构特征。2. 了解棱柱、棱锥、棱台的底面、侧棱、侧面、顶点的意义。3. 了解圆柱、圆锥、圆台的底面、母线、侧面、轴的意义。4. 了解和正方体、球有关的简单组合体及其结构特征。5. 能根据条件判断几何体的类型。发展要求说明1.
12、 柱、锥、台、球的结构特征只需通过实例概括,不必证明。2. 空间几何体的性质不必深入挖掘。1.2 空间几何体的三视图和直观图基本要求1. 了解中心投影和平行投影的意义。2. 理解三视图画法的规则,能画简单几何体的三视图。3. 掌握斜二测画法,能画简单几何体的直观图。4. 能识别三视图所表示的空间几何体。5. 理解三视图和直观图的联系,并能进行转化。发展要求说明对于画三视图和直观图的几何体,只要求前一节介绍的柱、锥、台、球及它们的一些简单组合体,不必研究较复杂的几何体。1.3空间几何体的表面积和体积基本要求1 了解表面与展开图的关系。2 了解柱、锥、台、球表面积的计算公式,并能计算一些简单组合体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何初步 人教版 高中数学 必修 立体几何 初步 教材 分析
限制150内