整式的乘除因式分解计算题精选1(含答案)(10页).doc
《整式的乘除因式分解计算题精选1(含答案)(10页).doc》由会员分享,可在线阅读,更多相关《整式的乘除因式分解计算题精选1(含答案)(10页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-整式的乘除因式分解计算题精选1(含答案)-第 9 页整式的乘除因式分解习题精选一解答题(共12小题)1计算:; (y5)23(y)35y2 (ab)64(ba)3(ba)2(ab)2计算:(2x3y)28y2; (m+3n)(m3n)(m3n)2;(ab+c)(abc); (x+2y3)(x2y+3);(a2b+c)2; (x2y)2+(x2y)(2yx)2x(2xy)2x(m+2n)2(m2n)2 3计算:(1)6a5b6c4(3a2b3c)(2a3b3c3) (2)(x4y)(2x+3y)(x+2y)(xy)(3)(2x2y)233xy4 (4)(mn)(m+n)+(m+n)22m24计
2、算:(1)(x2)8x4x102x5(x3)2x (2)3a3b2a2+b(a2b3ab5a2b)(3)(x3)(x+3)(x+1)(x+3) (4)(2x+y)(2xy)+(x+y)22(2x2xy)5因式分解:6ab324a3b; 2a2+4a2; 4n2(m2)6(2m);2x2y8xy+8y; a2(xy)+4b2(yx); 4m2n2(m2+n2)2; (a2+1)24a2; 3xn+16xn+3xn1x2y2+2y1; 4a2b24a+1; 4(xy)24x+4y+1;3ax26ax9a; x46x227; (a22a)22(a22a)36因式分解:(1)4x34x2y+xy2 (
3、2)a2(a1)4(1a)27给出三个多项式:x2+2x1,x2+4x+1,x22x请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解8先化简,再求值:(2a+b)(2ab)+b(2a+b)4a2bb,其中a=,b=29当x=1,y=2时,求代数式2x2(x+y)(xy)(xy)(x+y)+2y2的值10解下列方程或不等式组:(x+2)(x3)(x6)(x1)=0; 2(x3)(x+5)(2x1)(x+7)411先化简,再求值:(1)(x+2y)(2x+y)(x+2y)(2yx),其中,(2)若xy=1,xy=2,求x3y2x2y2+xy312解方程或不等式:(1)(x+3)2+2(x1
4、)2=3x2+13(2)(2x5)2+(3x+1)213(x210)整式的乘除因式分解习题精选参考答案与试题解析一解答题(共12小题)1计算:(y5)23(y)35y2(ab)64(ba)3(ba)2(ab)考点:整式的混合运算专题:计算题分析:原式先计算乘方运算,再计算乘除运算即可得到结果;原式利用幂的乘方与积的乘方运算法则计算,即可得到结果;原式利用多项式除以单项式法则计算即可得到结果;余数利用同底数幂的乘除法则计算即可得到结果解答:解:原式=5a2b(ab)(4a2b4)=60a3b4;原式=y30(y)15y2=y17;原式=a2bab2;原式=4(ab)10点评:此题考查了整式的混合
5、运算,熟练掌握运算法则是解本题的关键2计算:(2x3y)28y2; (m+3n)(m3n)(m3n)2;(ab+c)(abc); (x+2y3)(x2y+3);(a2b+c)2; (x2y)2+(x2y)(2yx)2x(2xy)2x(m+2n)2(m2n)2考点:整式的混合运算菁优网版权所有专题:计算题分析:原式利用完全平方公式展开,去括号合并即可得到结果;原式第一项利用平方差公式计算,第二项利用完全平方公式展开,去括号合并即可得到结果;原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;原式利用完全平方公式展开,即可得到结果
6、;原式中括号中利用完全平方公式化简,去括号合并后利用多项式除以单项式法则计算即可得到结果;原式逆用积的乘方运算法则变形,计算即可得到结果;原式利用平方差公式计算即可得到结果解答:解:原式=4x212xy+9y28y2=4x212xy+y2;原式=m29n2m2+6mn9n2=6mn18n2;原式=(ab)2c2=a22ab+b2c2; 原式=x2(2y3)2=x24y2+12y9;原式=(a2b)2+2c(a2b)+c2=a24ab+4b2+2ac4bc+c2; 原式=(x24xy+4y2x2+4xy4y24x2+2xy)2x=(4x2+2xy)2x=2x+y;原式=(m+2n)(m2n)2=
7、(m24n2)2=m48m2n2+16n4;原式=a(a+b+c)=a2+ab+ac点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键3计算:(1)6a5b6c4(3a2b3c)(2a3b3c3)(2)(x4y)(2x+3y)(x+2y)(xy)(3)(2x2y)233xy4(4)(mn)(m+n)+(m+n)22m2考点:整式的混合运算菁优网版权所有专题:计算题分析:(1)原式利用单项式除以单项式法则计算即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式先利用积的乘方与幂的乘方运算法则计算,再利用单项式乘单项式法则计算即可得到结果;(4)
8、原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果解答:解:(1)原式=2a3b3c3(2a3b3c3)=1;(2)原式=2x25xy12y2x2xy+2y2=x26xy10y2;(3)原式=64x12y63xy4=192x13y10;(4)原式=m2n2+m2+2mn+n22m2=2mn点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键4计算:(1)(x2)8x4x102x5(x3)2x(2)3a3b2a2+b(a2b3ab5a2b)(3)(x3)(x+3)(
9、x+1)(x+3)(4)(2x+y)(2xy)+(x+y)22(2x2xy)考点:整式的混合运算菁优网版权所有专题:计算题分析:(1)原式先利用幂的乘方运算法则计算,再利用同底数幂的乘除法则计算,合并即可得到结果;(2)原式利用单项式除以单项式,以及单项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式第一项利用平方差公式化简,第二项利用多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果解答:解:(1)原式=x16x4x102x5x6x=x102x10=x10;(2)原式=3ab2+a2b23ab25a
10、2b2=4a2b2;(3)原式=x29x24x3=4x12;(4)原式=4x2y2+x2+2xy+y24x2+2xy=x2+4xy点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键5因式分解:6ab324a3b; 2a2+4a2; 4n2(m2)6(2m);2x2y8xy+8y; a2(xy)+4b2(yx); 4m2n2(m2+n2)2;(a2+1)24a2; 3xn+16xn+3xn1x2y2+2y1; 4a2b24a+1; 4(xy)24x+4y+1;3ax26ax9a; x46x22
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式 乘除 因式分解 算题 精选 答案 10
限制150内