数字规律题(8页).doc
《数字规律题(8页).doc》由会员分享,可在线阅读,更多相关《数字规律题(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数字规律题-第 8 页数字规律题规律探析问题,是近几年中考数学里比较经典的考点问题。数字规律问题的探析,就是其中的一个重要分支。1、数列型数字问题探找规律例1、有一组数:1,2,5,10,17,26,请观察这组数的构成规律,用你发现的规律确定第8个数为 解析:仔细观察这一数列中的各个数字的构成特点,不难发现如下;第一个数是1,第二个数数1+1,第三个数是1+1+3,第四个数是1+1+3+5,第五个数是1+1+3+5+7,第六个数是1+1+3+5+7+9, 为了使规律凸显的明显,我们不妨把第一个数1也写成两个数的和的形式,为1+0,这样,就发现数字1是固定不变的,规律就蕴藏在新数列0,1,4,
2、9,16 中,而0,1,4,9,16 这些数都是完全平方数,并且底数恰好等于这个数字对应的序号与1的差,即1=1+(1-1)2,2=1+(2-1)2,5=1+(3-1)2,10=1+(4-1)2,17=1+(5-1)2,26=1+(5-1)2,这样,第n个数为1+(n-1)2,找到数列变化的一般规律后,就很容易求得任何一个序号的数字了。因此,第八个数就是当n=8时,代数式1+(n-1)2的值,此时,代数式1+(n-1)2的值为1+(8-1)2=50。所以,本空填50。例2、古希腊数学家把1,3,6,10,15,21,叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为 19
3、9解析:本题中数列的数字,不容易发现其变化的规律。我们不妨利用函数的思想去试一试。当序号为1时,对应的值是1,有序号和对应的数值构成的点设为A,则A(1,1);当序号为2时,对应的值是3,有序号和对应的数值构成的点设为B,则B(2,3);当序号为3时,对应的值是6,有序号和对应的数值构成的点设为C,则C(3,6);因为,所以有:成立,所以,对应的数值y是序号n的二次函数,因此,我们不妨设y=an2+bn+c,把A(1,1),B(2,3),C(3,6)分别代入y=an2+bn+c中,得:a+b+c=1,4a+2b+c=3,9a+3b+c=6,解得:a=,b=,c=0,所以,y= n2+n,因此,
4、当n=100时,y= 1002+100,当n=98时,y= 982+98,因此(1002+100)-(982+98)=199,所以该空应该填199。2、图示型数字问题探找规律例3、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示:按照上面的规律,摆个“金鱼”需用火柴棒的根数为( )A B C D解:第一个图需要火柴的根数是8,有序号和对应的数值构成的点设为A,则A(1,8);第二个图需要火柴的根数是14,有序号和对应的数值构成的点设为B,则B(2,14);第三个图需要火柴的根数是20,有序号和对应的数值构成的点设为C,则C(3,20);因为,所以有:成立,所以,每个图形中所需要
5、的火柴的总根数y是这个图形的序号n的一次函数,因此,我们不妨设y=kn+b,把A(1,8),B(2,14)分别代入y=kn+b中得:k+b=8,2k+b=14,解得:k=6,b=2,所以,y=6n+2。因此选A。例4、下列图案是由边长为单位长度的小正方形按一定的规律拼接而成。依此规律,第5个图案中小正方形的个数为_。解析:仔细观察第一个图,正方形的个数为1,第二个图形中正方形的特点是中间是3个,左右两边各一个,即为1+3+1个,第三个图形中正方形的特点是中间是5个,左右分别是1+3个,即为1+3+5+3+1,分析到这里,相信你一定想到了这里面的变化规律了吧。是的,第n个图形中正方形的个数为1+
6、3+5+ +(2n-1)+ +5+3+1=2n2-2n+1,这样,第5个图形中正方形的个数,也就是当n=5时,代数式2n2-2n+1的值,所以,代数式的值为:2n2-2n+1=252-25+1=41个。所以,本空填50。例5、按如下规律摆放三角形:则第(4)堆三角形的个数为_;第(n)堆三角形的个数为_.解析:仔细观察第一个图形,三角形排列的特点是中间3=(1+2)个,左右各1个,即图1中三角形的总数为1+(1+2)+1,第二个图形中三角形形的特点是中间是4=(2+2)个,左右两边各2个,即为2+(2+2)+2个,第三个图形中三角形的特点是中间是5=(3+2)个,左右分别是3个,即为3+(3+
7、2)+3,分析到这里,相信你一定想到了这里面的变化规律了吧。是的,第n个图形中三角形的个数为n+(n+2)+n =3n+2,这样,第4个图形中三角形正方形的个数,也就是当n=4时,代数式3n+2的值,所以,代数式的值为:3n+2=34+2=14个。所以,本题的两个空分别填14和3n+2。例6、柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23听罐头,第二层有34听罐头,第三层有45听罐头,根据这堆罐头排列的规律,第n(n为正整数)层有 听罐头(用含n的式子表示)。解析:仔细观察图形,第一层有23听罐头,对应的序号为1,第一个数字2与序号1的关系是序号+1,第二个数字是3,它与序号的关系是序
8、号+2;第二层有34听罐头,对应的序号为2,第一个数字3与序号的关系是序号+1,第二个数字是4,它与序号的关系是序号+2;第三层有45听罐头,对应的序号为3,第一个数字4与序号的关系是序号+1,第二个数字是5,它与序号的关系是序号+2;分析到这里,相信你一定想到了这里面的变化规律了吧。是的,第n层中有(n+1)(n+2)听罐头,即n2+3n+2。所以,本题的空填n2+3n+2。例7、下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第幅图中共有 个。123解析:仔细观察第一个图形,有一个菱形,第二个图形中有3个菱形,第三个图形中有5个菱形,仔细观察这些数的特点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 规律
限制150内