正余弦定理 练习题(10页).doc
《正余弦定理 练习题(10页).doc》由会员分享,可在线阅读,更多相关《正余弦定理 练习题(10页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-正余弦定理 练习题-第 11 页1在直角梯形ABCD中,ABCD,ABC90,AB2BC2CD,则cosDAC()A. B. C. D.2在ABC中,角A,B,C所对的边分别是a,b,c,已知c1,B45,cosA,则b等于()A. B. C. D.4在ABC中,已知bcosCccosB3acosB,其中a、b、c分别为角A、B、C的对边,则cosB的值为()A. B C. D5(文)(2015辽宁葫芦岛市一模)在ABC中,内角A,B,C所对的边分别是a,b,c.若c2(ab)26,C,则ABC的面积是()A3 B.C.D3答案C解析由余弦定理得:c2a2b22abcosCa2b2ab(ab
2、)26,ab6,SABCabsinC6.(理)在ABC中,ABC,AB,BC3,则sinBAC()A. B.C. D.答案C解析本题考查了余弦定理、正弦定理由余弦定理得AC2AB2BC22ABBCcos29235,AC,由正弦定理,sinA.6在锐角ABC中,设xsinAsinB,ycosAcosB,则x、y的大小关系为()AxyBxyDxy答案C解析yxcosAcosBsinAsinBcos(AB)cos(C)cosC,ABC为锐角三角形,cosC0,yx0,yx.7(2015昆明市质检)设ABC的内角A,B,C所对的边分别是a,b,c,若AB边上的高为,且a2b22ab,则C()A. B.
3、C. D.答案B解析由已知得:SABCabsinCc,sinC,又由余弦定理得:cosCsinC,即sinCcosC,sin,sin1,C,C.8(文)(2015郑州市质检)在ABC中,角A,B,C所对的边分别是a,b,c,已知sin(BA)sin(BA)3sin2A,且c,C,则ABC的面积是()A. B.C. D.或答案D解析由已知得:2sinBcosA3sin2A6sinAcosA,若cosA0,则A,则B,b,SABCbc;若A,则sinB3sinA,由正弦定理得:b3a,又由余弦定理得:c2a2b22abcosC,即7a29a23a27a2,a1,b3,SABCabsinC13,选D
4、.(理)(2015衡水中学三调)已知ABC的内角A、B、C对的边分别为a、b、c,sinAsinB2sinC,b3,当内角C最大时,ABC的面积等于()A. B.C. D.答案A解析根据正弦定理及sinAsinB2sinC得ab2c,c,cosC2,当且仅当,即a时,等号成立,此时sinC,SABCabsinC3.二、填空题9已知ABC的一个内角为120,并且三边长构成公差为4的等差数列,则ABC的面积为_答案15解析设三角形的三边长分别为a4,a,a4,最大角为,由余弦定理得(a4)2a2(a4)22a(a4)cos120,则a10,所以三边长为6,10,14.ABC的面积为S610sin1
5、2015.方法点拨有关数列与三角函数知识交汇的题目,利用正余弦定理将数列关系式或数列问题转化为三角函数问题,用三角函数知识解决10(文)(2014福建理,12)在ABC中,A60,AC4,BC2,则ABC的面积等于_答案2解析本题考查正弦定理及三角形的面积公式,由正弦定理得,sinB1,B90,AB2,S222.(理)(2014天津理,12)在ABC中,内角A、B、C所对的边分别是a、b、c,已知bca,2sinB3sinC,则cosA的值为_答案解析2sinB3sinC,2b3c,又bca,ba,ca,cosA.11(2015南京二模)在ABC中,已知AB2,BC3,ABC60,BDAC,D
6、为垂足,则的值为_答案解析利用余弦定理求出AC的长度,再利用面积公式求出BD,最后利用数量积的定义求解在ABC中,由余弦定理可得AC2492237,所以AC,由ABC的面积公式可得23BD,解得BD.所以()|2.方法点拨解答三角函数与平面向量交汇的题目,先运用向量的有关知识(平行、垂直、数量积的坐标表示等)脱去向量外衣再运用三角函数知识解决或先利用三角函数或解三角形的有关知识求出需要的量(边的长度、角的大小)再进行向量运算三、解答题12(文)(2015新课标文,17)已知a,b,c分别为ABC内角A,B,C的对边,sin2B2sin Asin C.(1)若ab,求cos B;(2)设B90,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正余弦定理 练习题10页 余弦 定理 练习题 10
限制150内