《分数乘法简便运算专项练习题(6页).doc》由会员分享,可在线阅读,更多相关《分数乘法简便运算专项练习题(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-分数乘法简便运算专项练习题-第 6 页分数简便运算常见题型l 第一种:连乘乘法交换律的应用例题:1) 2) 3)涉及定律:乘法交换律 基本方法:将分数相乘的因数互相交换,先行运算。l 第二种:乘法分配律的应用例题:1) 2) 3) 涉及定律:乘法分配律 基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。l 第三种:乘法分配律的逆运算(提取公因数)例题:1) 2) 3) 涉及定律:乘法分配律逆向定律 基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。l 第四种:添加因数“1”例题:1) 2) 3) 涉及定律:乘法分配律逆向运算 基本方法:添加
2、因数“1”,将其中一个数n转化为1n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。l 第五种:数字化加式或减式例题:1) 2) 3) 涉及定律:乘法分配律逆向运算 基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。 注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。例如:999可化为1000-1。其结果与原数字保持一致。l 第六种:带分数化加式例题:1) 2) 3) 涉及定律:乘法分配律 基本方法:将带分数转化为整
3、数部分和分数部分相加的形式,还可以转化成整数和带分数相加的形式,目的是便于约分。再按照乘法分配律计算。l 第七种:乘法交换律与乘法分配律相结合(转化法)例题:1) 2) 3) 涉及定律:乘法交换律、乘法分配律逆向运算 基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。l 第八种:有规律的分数混合运算形如的分数(拆分法)例题:1) 2) 3)基本方法:形如的分数可拆分为的形式,再进行运
4、算。l 第九种:有规律的分数混合运算形如(a,b不为0)的分数(拆分法)例题:1) 基本方法:形如(a,b不为0)的分数可拆分为的形式,再进行运算。 分数简便运算课后练习(一) 10 24 (二) +0.6 6.83.2 (三)( )32 ()12 ( ) (四) 101- (五)46 2008 36(六) 325 (七) 12( )17 分数混合运算的误区:例1: 改: 例2: 改: 乘法分配律练习(一)(- )60 (+ )18 ( - )(+ ) 5 (+)27 6 (+) (- ) (+) (+) 25( + ) (- )20 ( - )1812(+ + ) (+ ) (+ )35分数
5、乘法分配律(二)+ + + + - 6 + 6+ 0.921.410.928.59 - 1.311.61.61.3 11.618.4+ 7+5 2121 乘法分配律练习(三)101 78 28 36 21 37 24 34 1226 30 27410 258 32.5 乘法分配律练习(四)(+ )7 5 (- )5 12 ( - )618( + )79 (+ ) 54 (+)273 (+ ) 20 8 312(- ) (+4 ) 25( + )24 (- )610 ( - )1826 5(+) 30(+) ( - )60乘法分配律练习(五)101- 99 + 101- 12+ 7 0.92990.92 14- 1.3111.3 1913+ 20+ 12+17+ 19+ 23+ 乘法结合律和交换律的练习课(六)5 3 518 16 14 4 6 () (125 34) 27 5 6 分数混合计算练习题(七)(7 - ) (+ ) 25 1- + (5 - ) + - 1 () 6
限制150内