《椭圆离心率总结汇总(19页).doc》由会员分享,可在线阅读,更多相关《椭圆离心率总结汇总(19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-椭圆离心率总结汇总-第 19 页关于椭圆离心率设椭圆的左、右焦点分别为,如果椭圆上存在点P,使,求离心率e的取值范围。 解法1:利用曲线范围 设P(x,y),又知,则 将这个方程与椭圆方程联立,消去y,可解得 解法2:利用二次方程有实根由椭圆定义知 解法3:利用三角函数有界性 记 解法4:利用焦半径 由焦半径公式得 解法5:利用基本不等式 由椭圆定义,有 平方后得 解法6:巧用图形的几何特性 由,知点P在以为直径的圆上。 又点P在椭圆上,因此该圆与椭圆有公共点P 故有水深火热的演练一、直接求出或求出a与b的比值,以求解。在椭圆中,1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于2.已知
2、椭圆两条准线间的距离是焦距的2倍,则其离心率为3.若椭圆经过原点,且焦点为,则椭圆的离心率为4.已知矩形ABCD,AB4,BC3,则以A、B为焦点,且过C、D两点的椭圆的离心率为。短轴端点为满足,则椭圆的离心率为。6.已知则当mn取得最小值时,椭圆的的离心率为7.椭圆的焦点为,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是8.已知F1为椭圆的左焦点,A、B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1F1A,POAB(O为椭圆中心)时,椭圆的离心率为。9.P是椭圆+=1(ab0)上一点,是椭圆的左右焦点,已知 椭圆的离心率为10.已知是椭圆的两个焦点,P是椭圆上一点,若, 则椭
3、圆的离心率为 11.在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为12.设椭圆=1(ab0)的右焦点为F1,右准线为l1,若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是。13.椭圆(ab0)的两顶点为A(a,0)B(0,b),若右焦点F到直线AB的距离等于AF,则椭圆的离心率是。 14.椭圆(ab0)的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率是 15.已知直线L过椭圆(ab0)的顶点A(a,0)、B(0,b),如果坐标原点到直线L的距离为,则椭圆的离心率是 16.在平面直角坐标系中,椭圆1( 0)
4、的焦距为2,以O为圆心,为半径作圆,过点作圆的两切线互相垂直,则离心率= 17.设椭圆的离心率为,右焦点为,方程 的两个实根分别为和,则点(A)必在圆内必在圆上必在圆外以上三种情形都有可能二、构造的齐次式,解出1已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是2以椭圆的右焦点F2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M、N两点,椭圆的左焦点为F1,直线MF1与圆相切,则椭圆的离心率是3以椭圆的一个焦点F为圆心作一个圆,使该圆过椭圆的中心O并且与椭圆交于M、N两点,如果MF=MO,则椭圆的离心率是4设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2
5、为等腰直角三角形,则椭圆的离心率是5已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若ABF2是正三角形,则这个椭圆的离心率是6设分别是椭圆的左、右焦点,P是其右准线上纵坐标为 ( 为半焦距)的点,且,则椭圆的离心率是三、寻找特殊图形中的不等关系或解三角形。1已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是2已知是椭圆的两个焦点,P是椭圆上一点,且,椭圆离心率e的取值范围为3已知是椭圆的两个焦点,P是椭圆上一点,且,椭圆离心率e的取值范围为4设椭圆(ab0)的两焦点为F1、F2,若椭圆上存在一点Q,使F1QF2=120,椭圆离心率e的取值范
6、围为 5在中,若以为焦点的椭圆经过点,则该椭圆的离心率6设分别是椭圆()的左、右焦点,若在其右准线上存在 使线段的中垂线过点,则椭圆离心率的取值范围是7如图,正六边形ABCDEF的顶点A、D为一椭圆的两个焦点,其余四个顶点B、C、E、F均在椭圆上,则椭圆离心率的取值范围是椭圆离心率的解法椭圆的几何性质中,对于离心率和离心率的取值范围的处理,同学们很茫然,没有方向性。题型变化很多,难以驾驭。以下,总结一些处理问题的常规思路,以帮助同学们理解和解决问题。一、 运用几何图形中线段的几何意义。基础题目:如图,O为椭圆的中心,F为焦点,A为顶点,准线L交OA于B,P、Q在椭圆上,PDL于D,QFAD于F
7、,设椭圆的离心率为e,则e=e=e=e=e=DBFOBBBAPQ评:AQP为椭圆上的点,根据椭圆的第二定义得,。AO=a,OF=c,有;AO=a,BO= 有。题目1:椭圆 +=1(ab 0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e?BAF2F1思路:A点在椭圆外,找a、b、c的关系应借助椭圆,所以取AF2 的中点B,连接BF1 ,把已知条件放在椭圆内,构造F1BF2分析三角形的各边长及关系。解:F1F2=2c BF1=c BF2=cc+c=2a e= = -1 变形1:椭圆 +=1(ab 0)的两焦点为F1 、F2 ,点P在椭圆上,使O
8、PF1 为正三角形,求椭圆离心率? OOOOOOOOOOOOOOOOOOOPF1F2 F2F22解:连接PF2 ,则OF2=OF1=OP,F1PF2 =90图形如上图,e=-1 变形2: 椭圆 +=1(ab 0)的两焦点为F1 、F2 ,AB为椭圆的顶点,P是椭圆上一点,且PF1 X轴,PF2 AB,求椭圆离心率?BAF2F1PO 解:PF1= F2 F1=2c OB=b OA=aPF2 AB = 又 b= a2=5c2 e=点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的 方程式,推导离心率。二、运用正余弦定理解决图形中的三角形题目2:椭圆 +=1(ab 0),A是
9、左顶点,F是右焦点,B是短轴的一个顶点,ABF=90,求e?FBAO 解:AO=a OF=c BF=a AB=a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2-ac=0 两边同除以a2 e2+e-1=0 e= e=(舍去)变形:椭圆 +=1(ab 0),e=, A是左顶点,F是右焦点,B是短轴的一个顶点,求ABF?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。答案:90引申:此类e=的椭圆为优美椭圆。性质:1、ABF=902、假设下端点为B1 ,则ABFB1 四点共圆。3、焦点与相应准线之间的距离等于长半轴长。总结:焦点三角形以外的三角形的处理
10、方法根据几何意义,找各边的表示,结合解斜三角形公式,列出有关e的方程式。题目3:椭圆 +=1(ab 0),过左焦点F1 且倾斜角为60的直线交椭圆与AB两点,若F1A=2BF1,求e?解:设BF1=m 则AF2=2a-am BF2=2a-m在AF1F2 及BF1F2 中,由余弦定理得:两式相除 =e=题目4:椭圆 +=1(ab 0)的两焦点为F1 (-c,0)、F2 (c,0),P是以F1F2为直径的圆与椭圆的一个交点,且PF1F2 =5PF2F1 ,求e?分析:此题有角的值,可以考虑正弦定理的应用。解:由正弦定理: = = 根据和比性质:= 变形得: = =ePF1F2 =75PF2F1 =
11、15 e= =点评:在焦点三角形中,使用第一定义和正弦定理可知e=变形1:椭圆 +=1(ab 0)的两焦点为F1 (-c,0)、F2 (c,0),P是椭圆上一点,且F1PF2 =60,求e的取值范围?分析:上题公式直接应用。解:设F1F2P=,则F2F1P=120-e= e0) F1F2 为椭圆两焦点,M为椭圆上任意一点(M不与长轴两端点重合)设PF1F2 =,PF2F1 =若tan tan ,求e的取值范围?分析:运用三角函数的公式,把正弦化正切。解;根据上题结论e= =e eb 0),斜率为1,且过椭圆右焦点F的直线交椭圆于A、B两点,+与=(3,-1)共线,求e?B(X2,Y2)A(X1
12、,Y1)O法一:设A(x1,y1) ,B(x2,y2)(a2+b2)x2-2a2cx+a2c2-a2b2=0 x1+x2= y1+y2=-2c= +=(x1+x2,y1+y2)与(3,-1)共线,则-(x1+x2)=3(y1+y2)既 a2=3b2 e= 法二:设AB的中点N,则2=+ - 得:=- 1=- (-3) 既a2=3b2 e=四、 由图形中暗含的不等关系,求离心率的取值范围。题目6:椭圆 +=1(ab 0)的两焦点为F1 (-c,0)、F2 (c,0),满足12 =0的点M总在椭圆内部,则e的取值范围?F2MF1O分析:12 =0以F1F2 为直径作圆,M在圆O上,与椭圆没有交点。
13、解:c2c2 0eb 0)的两焦点为F1 (-c,0)、F2 (c,0),P为右准线L上一点,F1P的垂直平分线恰过F2 点,求e的取值范围?MPF2F1O分析:思路1,如图F1P与 F2M 垂直,根据向量垂直,找a、b、c的不等关系。 思路2:根据图形中的边长之间的不等关系,求e解法一:F1 (-c,0) F2 (c,0) P(,y0 ) M(,)既(, ) 则1 =-( +c, y0 ) 2 =-( -c, ) 12 =0 ( +c, y0 ) ( -c, )=0 ( +c)( -c)+ =0a2-3c20 e1解法2:F1F2=PF2=2c PF2-c 则2c-c 3c3c2a2 则e1总结:对比两种方法,不难看出法一具有代表性,可谓通法,而法二是运用了垂直平分线的几何性质,巧妙的运用三角形边的大小求解的妙法。所以垂直平分线这个条件经常在解析几何中出现,对于它的应用方法,值得大家注意。 离心率为高考的一个重点题目,多以选择题或解答题的第一问形式出现,望大家经过此系列题目能对它有一些认识和掌握。
限制150内