初中数学动点最值问题解法探析(6页).doc
《初中数学动点最值问题解法探析(6页).doc》由会员分享,可在线阅读,更多相关《初中数学动点最值问题解法探析(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初中数学动点最值问题解法探析-第 6 页初中数学动点最值问题解法探析一、问题原型:(人教版八年级上册第42页探究)如图1-1,要在燃气管道上修建一个泵站,分别向、两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?这个“确定最短路线”问题,是一个利用轴对称解决极值的经典问题。解这类问题二、基本解法:对称共线法。利用轴对称变换,将线路中各线段映射到同一直线上(线路长度不变),确定动点位置,计算线路最短长度。三、一般结论:(在线段上时取等号)(如图1-2)线段和最小,常见有三种类型:(一)“|定动|+|定动|”型:两定点到一动点的距离和最小通过轴对称,将动点所在直线同侧的两个定点中的其中一
2、个,映射到直线的另一侧,当动点在这个定点的对称点及另一定点的线段上时,由“两点之间线段最短”可知线段和的最小值,最小值为定点线段的长。1.两个定点+一个动点。如图1-3,作一定点关于动点所在直线的对称点,线段(是另一定点)与的交点即为距离和最小时动点位置,最小距离和。例1(2006年河南省中考题)如图2,正方形的边长为,是的中点,是对角线上一动点,则的最小值是。解析:与关于直线对称,连结,则。连结,在中,则故的最小值为例2(2009年济南市中考题)如图3,已知:抛物线的对称轴为,与轴交于、两点,与轴交于点,其中,。(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点,使得的周长最小,请
3、求出点的坐标。解析:(1)对称轴为,由对称性可知:。根据、三点坐标,利用待定系数法,可求得抛物线为:(2)与关于对称轴对称,连结,与对称轴交点即为所求点。设直线解析式为:。把、代入得,。当时,则2.两个定点+两个动点。两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。例3如图4,河岸两侧有、两个村庄,为了村民出行方便,计划在河上修一座桥,桥修在何处才能两村村民来往路程最短?解析:设桥端两动点为、,那么点随点而动,等于河宽,且垂直于河岸。将向上平移河宽长到,线段与河北岸线的交点即为桥端点位置。四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 动点最值 问题 解法 探析
限制150内