因式分解拓展题及解答(必考题型)(7页).doc
《因式分解拓展题及解答(必考题型)(7页).doc》由会员分享,可在线阅读,更多相关《因式分解拓展题及解答(必考题型)(7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-因式分解拓展题及解答(必考题型)-第 7 页因式分解拓展题解板块一:换元法例1分解因式:【解析】 将看成一个字母,可利用十字相乘得原式例2分解因式:【解析】 方法1:将看作一个整体,设,则 原式= 方法2:将看作一个整体,设,则 原式= 方法3:将看作一个整体,过程略.如果学生的能力到一定的程度,甚至连换元都不用,直接把看作一个整体,将原式展开,分组分解即可,则原式.【巩固】 分解因式:【巩固】 分解因式:例3证明:四个连续整数的乘积加1是整数的平方【解析】 设这四个连续整数为:、原式【巩固】 若,是整数,求证:是一个完全平方数.令上式即例4分解因式【解析】 原式设,原式【巩固】 分解因式【
2、解析】 原式原式例5分解因式:【解析】 咋一看,很不好下手,仔细观察发现:,故可设,则. 故原式=【巩固】 分解因式:【解析】 由于题中以整体形式出现的式子有两个,共4个地方,故采取换元法后会大大简化计算过程,不妨设,【解析】 则原式=例6分解因式:【解析】 设,则原式=【巩固】 分解因式:【解析】 为方便运算,更加对称起见,我们令板块二:因式定理因式定理:如果时,多项式的值为,那么是该多项式的一个因式.有理根:有理根的分子是常数项的因数,分母是首项系数的因数.例7分解因式:【巩固】 的因数是,的因数是,因此,原式的有理根只可能是,(分母为1),因为,于是是的一个根,从而是的因式,这里我们可以
3、利用竖式除法,此时一般将被除式按未知数的降幂排列,没有的补0:可得原式点评:观察,如果多项式的奇数次项与偶数次项的系数和互为相反数,则说明; 如果多项式的奇数次项与偶数次项的系数和相等,则说明.【巩固】 分解因式:解析:本题有理根只可能为.当然不可能为根(因为多项式的系数全是正的),经检验是根,所以原式有因式,原式容易验证也是的根,所以【巩固】 分解因式:解析:例8分解因式:【解析】 常数项的因数为,把代入原式,得所以是原式的根,是原式的因式,并且【巩固】 分解因式:【解析】 如果多项式的系数的和等于,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么一定是它的根现在
4、正是这样:所以是原式的因式,并且板块三:待定系数法如果两个多项式恒等,则左右两边同类项的系数相等.即,如果 那么,.例9用待定系数法分解因式:【解析】 原式的有理根只可能为,但是这2个数都不能使原式的值为,所以原式没有有理根,因而也没有(有理系数的)一次因式故或故,解得,所以事实上,分解式是惟一的,所以不用再考虑其它情况.【巩固】 是否能分解成两个整系数的二次因式的乘积?解析:我们知道.不能分解成两个整系数的二次因式的乘积如果能够分解,那么一定分解为或比较与的系数可得: 由(1)得,代入(2)得,即或,没有整数能满足这两个方程所以,不能分解成两个整系数的二次因式的积(从而也不能分解成两个有理系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 拓展 解答 必考 题型
限制150内