包头原料条件下3200立方米高炉本体设计及渣铁处理系统的设计说明书(61页).doc
《包头原料条件下3200立方米高炉本体设计及渣铁处理系统的设计说明书(61页).doc》由会员分享,可在线阅读,更多相关《包头原料条件下3200立方米高炉本体设计及渣铁处理系统的设计说明书(61页).doc(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-包头原料条件下3200立方米高炉本体设计及渣铁处理系统的设计说明书-第 54 页本科生毕业设计说明书题 目:包头原料条件下3200m3高炉本体设计及渣铁处理系统的设计包头原料条件下3200m3高炉本体及渣铁处理系统设计摘 要高炉本体和渣铁处理系统设计是炼铁车间设计的重要部分。设计出一个较好的车间不但可以使高炉生产达到高产,使炼铁设备寿命长久,还可以降低耗能,节约成本,从而达到经济环保的目标,所以本设计,从高炉内型设计、耐火材料、冷却设备及渣铁处理方式的设计均借鉴了国内外先进高炉的情况。设计采用了陶瓷杯炉缸炉底,选择铜冷却壁作为高热负荷区的冷却设备。高炉冷却方式采用软水密闭循环进行冷却。风口平
2、台出铁场设计为矩形双出铁场,四铁口平衡布置,渣铁沟布置合理,铁水摆动流嘴,出铁场平坦化,炉前设备选型机械化程度高,选用除尘设施改善出铁场操作环境。关键词:高炉;设计;耐火材料;冷却设备;渣铁The Design of 3200 m3 Blast Furnace Ontology and The Slag and Iron Processing System Under the Raw Material Conditions in BaotouAbstractThe blast furnace body and the slag and iron processing system design
3、 is an important part of the iron-smelting plant design. Not only can design a good workshop so that the blast furnace production to achieve high yield, long service life of the iron-smelting equipment, can also reduce energy consumption, cost savings, so as to achieve the goal of economic environme
4、ntal protection, the design, from the design of blast furnace refractories. the design of cooling equipment and handling of slag and iron were borrowed from domestic and foreign advanced blast furnace. The design uses the hearth and bottom of the ceramic cup, copper stave heat load cooling equipment
5、. The blast furnace cooling method using soft water closed loop cooling. Outlet platform casthouse rectangular double casthouse, four iron port balance arrangement, slag and iron ditch is reasonably arranged, and molten iron to swing stream mouth, a flat field of iron blast furnace equipment selecti
6、on high degree of mechanization, the choice of the dust removal facilities to improve iron field operating environment.Key words: blast furnace;design;refractory;cooling equipment;slag and iron目 录摘 要IAbstractII第一章 文献综述11.1高炉冶炼概况及发展11.1.1高炉生产主要经济指标技术11.1.2炉容大型化及其空间尺寸的发展21.1.3炉料向精料发展21.1.4提高鼓风温度21.1.5
7、提高炉顶压力31.1.6富氧大喷吹31.1.7电子计算机的应用31.2高炉本体31.2.1高炉炉型发展31.2.2五段式高炉炉型及炉型尺寸31.3高炉炉衬51.3.1对高炉耐火材料性能要求61.3.2各种耐火材料的发展71.4高炉冷却81.4.1高炉冷却目的81.4.2冷却介质选择及处理81.4.3合理的冷却结构101.4.4高炉冷却壁的应用现状及其发展101.5高炉基础111.6 渣铁处理系统的设计111.6.1炉前操作平台111.6.2炉前设备141.7铁水处理151.7.1铁水罐车161.7.2铸铁机171.8炉渣处理171.8.1图拉法水淬渣171.9高炉本体和出铁场设计方案18第二章
8、 炼铁工艺计算192.1 高炉物料平衡计算192.1.1 原料条件及平衡计算22192.1.2 物料平衡计算242.2 高炉热平衡计算282.2.1 全炉热平衡282.2.2 高温区热平衡332.3炼铁焦比的计算353.1 炉缸设计373.1.1 炉缸尺寸373.1.2 渣口高度373.1.3 风口高度373.1.4 风口结构尺寸373.1.5 风口数目的确定373.1.6 死铁层厚度383.2 炉腰直径D,炉腹角,炉腹高度h2383.3 炉喉直径d1,炉喉高度h5,炉身角,炉身高度h4,炉腰高度 h3383.4 校核炉容393.5 炉顶高度h6,全高H39第四章 炉衬设计424.1 高炉各部
9、位耐火材料的选择424.1.1 炉缸及炉底部424.1.2 炉腹部位、炉腰部位及炉身中下部424.1.3 炉身上部及炉喉部位424.2 炉衬砌筑434.2.1 炉缸及炉底部位的砌筑434.2.2 炉腹部位砌筑444.2.3 炉腰部位砌筑444.2.4 炉身部位砌筑44第五章 高炉冷却设备的选择465.1炉底炉缸冷却设备的选择465.1.1 炉底冷却设备465.1.2 炉缸侧壁冷却设备475.1.3 炉底,炉缸的砌筑475.2 炉腹冷却设备的选择475.2.1炉腹冷却设备475.2.2炉腹冷却设备485.3 炉腰、炉身下部冷却设备的选择485.3.1炉腰、炉身下部冷却设备485.3.2 炉腰冷却
10、设备砌筑495.4炉身中部、上部冷却设备495.4.1 炉身中部冷却设备495.4.2 炉身上部及炉喉冷却设备505.4.3炉身冷却设备铺设505.5 高炉冷却水系统52第六章 渣铁处理系统的设计546.1风口平台及出铁场的设计546.1.1风口平台的设计546.1.2出铁场的设计546.1.3出铁场的平坦化546.2铁沟、渣沟及撇渣器的设计556.2.1铁沟的设计556.2.2渣沟的设计556.2.3撇渣器的设计556.2.4摆动流嘴566.3炉前设备的选型566.4铁水罐车的选择596.4.1 铸铁机的选择596.5 INBA(因巴)法炉渣处理606.5.1渣量核算61参考文献62致谢65
11、第一章 文献综述1.1高炉冶炼概况及发展高炉冶炼是获得生铁的主要手段,它以铁矿石(天然矿、烧结矿、球团矿)为原料,焦煤、煤粉、重油、天然气等燃料和还原剂,以石灰石、等为溶剂、在高炉内通过燃料燃烧、氧化物中铁元素的还原及非铁氧化物造渣等一系列复杂的物理化学过程,获得生铁,起主要副产品为高炉炉渣和高炉煤气。1.1.1高炉生产主要经济指标技术20世纪50年代以来,国家一直沿用从前苏联引来的高炉有效容积利用系数(1v)和冶炼强度(Is)等,作为评价高炉冶炼强化的指标。这些指标都是以高炉有效容积(Vu)为基准得来。高炉有效容积利用系数 ,t/(m3d)高炉冶炼强度 ,t/(m3d)式中P,Q分别为高炉的
12、生铁日产量和燃料日耗量,t/d高炉主要经济技术指标如表1.1:表1.1高炉主要经济技术指标技术指标单位指标值备注高炉有效容积m33200利用系数t/(m3d)2.28max2.5焦比kg/t310煤比kg/t200max250热风温度C1200max2500炉顶压力MPa0.2max0.25除外,欧洲流行采用以炉缸面积(A)为基准的强化指标:炉缸面积利用系数曲 ,t/m3d炉缸燃烧强度 对比而言,后者比前者在冶金概念上要科学些,生产实践表明,在一定的冶炼条件上,高炉的入炉风量、燃料燃烧量、煤气生产量和生铁产量都与炉缸面积成正比,这是高炉大型化的基本出发点。1.1.2炉容大型化及其空间尺寸的发展
13、我国现有高炉1250座左右,大于1000以上容积的高炉有仅128座,高炉结构不合理,平均炉容小,落后产能所占比重过大;固体废弃物(尘、泥和炉渣等)产生总量增长过快;烧结SO2排放形势日益严峻等。 生产实践证明,大型高炉容加上精料、高风温、高压炉顶、综合喷吹以及春水冷却等近代技术,可以降低单位烧结面积的基建投资和经营费用,提高劳动生产率,烧结矿质量,使高炉能耗降低、寿命增加,高炉利用系数也可达到2.0以上,同时生产管理方便,易于环境治理。1.1.3炉料向精料发展高炉的炉料结构从上世纪70年代以来几经变化,由开始的原矿冶炼到全部使用烧结矿,最后改为机烧结矿配酸性球团矿,炉料结构变化及相应的主要生产
14、指标如表1.2:炉料结构及主要生产指标表1.2炉料结构及主要生产指标时间年炉料结构系数t/m3d焦比Kg/t冶强t/m3d石灰石Kg/t熟料比%品位%1970块矿0.810350824903.0919701977土烧结矿和块矿1.09680.9756057.4350.2919801985高、低碱度烧结矿2.4115921.36417.410051.9219861988高碱度烧结矿、土烧球团矿2.4035931.4123.310056.271992高碱度烧结矿、土烧球团矿2.7955991.66314.910054.57注:入炉焦比按碎铁加入量进行了折算。随着高炉冶炼的强度的增加,炉料正向着精料
15、方向发展,精料包括入炉矿石的品味,改善入炉原料的还原性能,调高熟料率,稳定入炉原料成份和粒度。1.1.4提高鼓风温度提高鼓风温度可以大幅度降低焦比,特别是在鼓风温度较低时效果更为显著,一般认为,在1000一下,每提高风温100,可以节焦10到20kg/t铁,在1100以上,每提高100,可以降焦8到10kg/t铁。近年来,喷吹燃料量逐渐增加,提高风温更是迫切的事情。1.1.5提高炉顶压力煤气清洗系统文氏管安装了可调喉口,利用调节文氏管喉口的方法,将高炉顶压控制在35KPa左右。炉顶压力的提高有利于减少压差、稳定炉况、提高煤气利用率、最终提高产量。1.1.6富氧大喷吹喷吹燃料是,由于燃料的分解,
16、炉缸的理论燃烧温度有所降低,煤气量增加,块状区热流比下降,煤气利用变差。富氧鼓风可以克服这些足,合适的富氧率与喷吹的燃料成分有关,富氧大喷吹可达到优质、低耗、高产、长寿的冶炼效果。1.1.7电子计算机的应用60年代起高炉开始应用计算机,目前已可以控制配料、装料和热风炉操作。1.2高炉本体1.2.1高炉炉型发展高炉炉型发展经历了以下几个阶段。1) 原始炉型(大腰炉型) 各国原始炉型共同特点是炉缸和炉喉直径小,炉身下部炉腹(炉腰)直径大,高度小,即所谓的大腰炉型。2) 近代炉型 19世纪中叶,由于蒸汽鼓风机和焦炭的普遍使用,炉顶装料装置逐步实现机械化,高炉炉型趋向于扩大炉缸炉喉直径,并向高度方向发
17、展,逐渐形成近代的五段式高炉炉型。3) 现代炉型 由于人们对产量的要求和原燃料质量的改善,以鼓风机能力的提高,高炉炉型向着“大型横向”发展。高炉大型化成为高炉冶炼的发展趋势。1.2.2五段式高炉炉型及炉型尺寸现代高炉炉型由炉缸、炉腹、炉腰、炉身、炉喉组成,其几何尺寸就是高炉炉型的尺寸。我国高炉炉型各部分名称及尺寸表示方法见图1.1图1.1 高炉炉型尺寸表示方法1) 表征了高炉的矮胖程度,即高径比。值越大,炉料和煤气经过的路径越长,炉料和煤气在炉内接触的时间也越长,因此有利于煤气的热能和化学能的充分利用。但值较大时却增加了料柱的高度,从而相应的增加了煤气流通过料柱的阻力损失,不利于高炉冶炼的顺行
18、。因此应有适当值,过大过小都不好。2) 炉缸尺寸 炉缸是高炉的核心部位。炉缸的容积不仅应能保证足够数量的燃料燃烧,而且能容纳一定数量的铁和渣。炉缸的高度应能保证在炉缸内容纳两次出铁间隔时间内所生成的铁水和一定数量的炉渣,并应考虑因故而不能按时放渣放铁时能容纳多余的铁水和炉渣,因此炉缸高度直接决定了渣口和风口的高度,同时也影响风口前氧化带的形状和大小,从而也是影响炉况的主要要因素。3) 炉腹尺寸 炉腹的结构尺寸是炉腹高度和炉腹角。炉腹过高,有可能在炉料尚未熔融就进入收缩阶段,易造成难行和悬料,炉腹过低则可能减弱炉腹应有的作用。1000以上的大型高炉炉腹高度在3.0到3.6米,中小型高炉还可以小一
19、些,炉腹角一般取,过大不利于煤气分布,过小使得炉腹部位对下降炉料阻力增加,不利于顺行。4) 炉腰尺寸 炉腰的高度大小对高炉冶炼没有严重影响。高炉炉腰一般为m。5) 炉身尺寸 炉身尺寸包括炉身高度和炉身角。由于高炉大型化主要是炉型横向增大,所以高炉有效容积增大时高炉炉身高度增大并不多,大型高炉炉身高度基本在m范围。炉身角的大小与炉料的下降和煤气流的上升过程中的分布状态关系极大。炉身角取小时有利于炉料的下降,易发展边缘煤气流。但是,炉身角过小,边缘没气流过分发展,会给高炉操作上下部调节带来困难,不利于煤气热能和化学能的充分利用,容易使炉衬过热而损坏。炉身角取大值时,有利于抑制边缘煤气流过分发展,但
20、是不利于炉料下降。一般取值在之间,现代大型高炉炉身角取值在之间。6) 炉喉尺寸 炉喉的高度应能满足控制炉料分布和煤气流分布为宜,过高会使炉料挤紧而影响下降,过低难以满足装料制度调节的要求。炉喉高度一般以m为宜。1.3高炉炉衬高炉炉衬是用能够抵抗高温和化学侵蚀作用的耐火材料砌筑成的。炉衬的主要作用是构成工作空间,减少散热损失,以及保护金属结构件免遭热应力和化学侵蚀作用。延长高炉寿命就是要延长炉衬寿命。 随着炼铁技术的发展,高炉炉型正在想着大型高效长寿低耗清洁的方向发展,高炉长寿技术发展尤为突出,新建的高炉或大修改造高炉均积极的采用高炉长寿技术,如陶瓷杯技术,UACR碳砖、铜冷却壁、软水密闭循环、
21、高炉人工智能等专家系统等。90年代末发达国家如日本、西欧等国家高炉的寿命达10到15年(无中修),最新建或改造的高炉寿命在15年以上,并提出20年的目标。以日本川崎钢铁公司千叶6号高炉(5153m)和水岛2号高炉(2857m)为代表,千叶6号高炉炉龄已达到23年以上,一代炉龄产铁量13388t/m,创造了高炉长寿的世界纪录;水岛2号高炉1979年开炉至今仍在运行,正在创造高炉炉龄新的世界纪录。我国好的钢铁企业如,宝钢、首钢、武钢、攀钢等大型高炉的炉龄基本能达到10到12年(无中修)。高炉陶瓷杯炉缸炉底结构是在炉底炭砖和炉缸炭砖的内缘,砌筑一层高铝质杯状刚玉砌体层,其具有明显的优越性。主要优点是
22、: (l) 陶瓷质耐火砖具有较好的抗铁水溶蚀性, 能克服炭砖抗铁水溶蚀性差的缺点, 可以减缓或消除炉缸蘑菇形侵蚀。(2)陶瓷质耐火材料导热系数比炭砖低对炉缸铁水有保温作用, 能提高铁水温度, 降低炼铁能耗。(3) 高炉检修短期休风时炉缸残存铁水的温度降低速度较慢, 有利于高炉顺利复风9。陶瓷杯结构如图1.2图1.2 陶瓷杯结构及理论等温线分布1.3.1对高炉耐火材料性能要求过去炼铁工作者对高炉耐火材料性能的要求仅限于一些常规性能, 如对炭砖仅要求灰分、耐压强度、体积密度、气孔率等指标, 对陶瓷耐火材料仅要求化学成分、耐火度、荷重软化温度、显气孔率、体积密度、耐压强度、重烧线变化率等指标。实际上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 包头 原料 条件下 3200 立方米 高炉 本体 设计 处理 系统 说明书 61
限制150内