《因式分解知识点总结及巩固练习(5页).doc》由会员分享,可在线阅读,更多相关《因式分解知识点总结及巩固练习(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-一、二、三、 因式分解知识点总结及巩固练习-第 5 页四、 知识梳理1. 因式分解 定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。 即:多项式几个整式的积 例:因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。2.因式分解的方法: (1)提公因式法: 定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式或多项式。例:的公因式是 解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为
2、2;字母部分都含有因式,故多项式的公因式是2.提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多项式中第一项有负号的,要先提取符号。例1:把分解因式. 解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab,故公因式为6ab。 解:例2:把多项式分解因式解析:由于,多项式可以变形为,我们可以发现多项式各项都含有公因式(),所以我们可以提取公因式()后,再将多项式写成积的形式.解:例3:把多项式分解因式 解:= (2)运用公式法
3、定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。注意:公式中的字母可代表一个数、一个单项式或一个多项式。 选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。例1:因式分解 解:=例2:因式分解 解:= (3)分组分解法(拓展) 将多项式分组后能提公因式进行因式分解;例:把多项式分解因式 解:= 将多项式分组后能运用公式进行因式分解. 例:将多项式因式分解解: (4)十字相乘法(形如形式的多项式,可以考虑运用此种方法) 方法:常数项拆成两个因数,这两数的和为一次项系数例:分解因式 分解因式补充点
4、详解 补充点详解我们可以将-30分解成pq的形式, 我们可以将100分解成pq的形式,使p+q=-1, pq=-30,我们就有p=-6, 使p+q=52, pq=100,我们就有p=2,q=5或q=-6,p=5。 q=50或q=2,p=50。 所以将多项式可以分 所以将多项式可以分解为 解为52 -6503.因式分解的一般步骤: 如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是
5、不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。五、 例题解析提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:系数取多项式各项系数的最大公约数;字母(或多项式因式)取各项都含有的字母(或多项式因式)的最低次幂.【例 1】 分解因式:(为正整数)(、为大于1的自然数)【巩固】 分解因式: ,为正整数.【例 2】 先化简再求值,其中,【巩固】 求代数式的值:,其中.【例 3】 已知:,求的值.【巩固】 分解因式:.公式法平方差公式:公式左边形式上是一个二项式,且两项的符号相反;每一项都可以化成某个数或式的平方形式;右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:左边相当于一个二次三项式;左边首末两项符号相同且均能写成某个数或式的完全平方式;左边中间一项是这两个数或式的积的2倍,符号可正可负;右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:
限制150内