二次函数的实际应用利润问答.ppt
《二次函数的实际应用利润问答.ppt》由会员分享,可在线阅读,更多相关《二次函数的实际应用利润问答.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、利润问题,一.几个量之间的关系.,2.利润、售价、进价的关系:,利润=,售价进价,1.总价、单价、数量的关系:,总价=,单价数量,3.总利润、单件利润、数量的关系:,总利润=,单件利润数量,二.在商品销售中,采用哪些方法增加利润?,例1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?,列表分析1:,总售价-总进价=总利润,设每件涨价x元,则每件售价为(60+x)元,(60+x)(300-10 x),40(300-10 x),总利润=,单件利润数量,列表分析2:,
2、(60-40+x),(300-10 x),请继续完成.,例2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?,分析与思考:,在这个问题中,总利润是不是一个变量? 如果是,它随着哪个量的改变而改变?,若设每件加价x元,总利润为y元。 你能列出函数关系式吗?,解:设每件加价为x元时获得的总利润为y元.,y =(60-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-50 x-600) =-10(x-2
3、5)2-625-600 =-10(x-25)2+12250,(0x30),当x=25时,y的最大值是12250.,定价:60+25=85(元),问题3.已知某商品的进价为每件40元。现在 的售价是每件60元,每星期可卖出300件。 市场调查反映:如调整价格,每涨价一元, 每星期要少卖出10件;每降价一元,每星期 可多卖出18件。如何定价才能使利润最大?,在问题2中已经对涨价情况作了解答,定价 为85元时利润最大.,降价也是一种促销的手段.请你对问题中的 降价情况作出解答.,若设每件降价x元时的总利润为y元,y=(60-40-x)(300+18x) =(20-x)(300+18x) =-18x2
4、+60 x+6000,答:综合以上两种情况,定价为85元可获得 最大利润为12250元.,习题 .某商店购进一种单价为40元的篮球,如 果以单价50元售出,那么每月可售出500个, 据销售经验,售价每提高1元,销售量相应减 少10个。 (1)假设销售单价提高x元,那么销售每个 篮球所获得的利润是_元,这种篮球每 月的销售量是_ 个(用X的代数式表示) (2)8000元是否为每月销售篮球的最大利润? 如果是,说明理由,如果不是,请求出最大利润, 此时篮球的售价应定为多少元?,小结,1.正确理解利润问题中几个量之间的关系,2.当利润的值时已知的常数时,问题通过 方程来解;当利润为变量时,问题通过函
5、 数关系来求解.,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,来到商场,请大家带着以下几个问题读题,(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,来到商场,分析:,调整价格包括涨价和降价两种情况,先来看涨价的情况:
6、设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖 件,实际卖出 件,销额为 元,买进商品需付 元因此,所得利润为 元,10 x,(300-10 x),(60+x)(300-10 x),40(300-10 x),y=(60+x)(300-10 x)-40(300-10 x),即,(0X30),(0X30),所以,当定价为65元时,利润最大,最大利润为6250元,在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。,解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 实际 应用 利用 运用 利润 问答
限制150内