平面直角坐标系中三角形面积的求法(例题及对应练习)(2页).doc
《平面直角坐标系中三角形面积的求法(例题及对应练习)(2页).doc》由会员分享,可在线阅读,更多相关《平面直角坐标系中三角形面积的求法(例题及对应练习)(2页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-平面直角坐标系中三角形面积的求法(例题及对应练习)-第 2 页例析平面直角坐标系中面积的求法一、有一边在坐标轴上例1如图1,平面直角坐标系中,ABC的顶点坐标分别为(3,0),(0,3),(0,1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,ABC的边BC在y轴上,由图形可得BC4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2如图2,三角形ABC三个顶点的坐标分
2、别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边ABy轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,
3、所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD4,CE=6,DB=4,BE=1,DE5.所以=(AD+CE)DE-ADDB-CEBE=(4+6)5446114.平面直角坐标系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 直角 坐标系 三角形 面积 求法 例题 对应 练习
限制150内