基于ARM_Cortex-M处理器图像无线传输的应用_毕业设计(论文)(34页).doc
《基于ARM_Cortex-M处理器图像无线传输的应用_毕业设计(论文)(34页).doc》由会员分享,可在线阅读,更多相关《基于ARM_Cortex-M处理器图像无线传输的应用_毕业设计(论文)(34页).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基于ARM_Cortex-M处理器图像无线传输的应用_毕业设计(论文)-第 27 页基于ARM_Cortex-M处理器图像无线传输的应用摘 要本论文主要阐述设计一款以ARM Cortex-M系列微处理器为核心的图像无线传输系统的设计方法和实现细节。论文主要针对未来对于智能家居以及安防设备的日益需求,采用迄今最为流行性能卓越的ARM Cortex-M系列嵌入式微处理器作为嵌入式智能设备的处理核心,并搭载使用Micrium公司的嵌入式实时操作系统uC/OSII。本论文开篇通过对智能家居和安防设备的需求分析及图像无线传输的发展现状,说明了现今以及未来人们希望图像监控能够无线获取,灵活操作和存取。接
2、下来系统硬件设计,将介绍了图像无线传输系统的硬件组成及基本理论。然后进行系统软件设计,讲介绍了图像无线传输系统各硬件的驱动程序设计。最后实现实时操作系统应用,介绍了uC/OSII在图像无线传输系统的使用。展示了系统完成后运行效果,并指出该系统的不足及以后改进的方向。该智能设备实现了图形界面触摸操控、驱动摄像头图像的采集、对图像的无线传输、接收和存储等功能,并测试表明该设备达到了预期的稳定要求。关键字 ARM Cortex-M uC/OSII 无线图像传输AbstractThis thesis describes the design of a core ARM Cortex-M series
3、microprocessor smart home system design methods and implementation details. Focused on the future is the increasing demand for smart home and security equipment, by far the most popular high performance ARM Cortex-M family of embedded microprocessor as a processing core for embedded intelligent devi
4、ces, and equipped with Micriums embedded real-time operating system uC/OS-II. The first part of the system analysis, the demand for smart home and security equipment and the development status of the wireless transmission of the image, indicating the present and future image monitoring to wireless a
5、ccess, flexible operation and access.The second part of the system hardware design, wireless image transmission system hardware components.The third part of the system software design, wireless image transmission system hardware driver design.The fourth part of the real-time operating system design
6、of real-time operating system uC/OS-II transplantation in the ARM cortex-M series processors.The smart devices to achieve the graphical interface touch control, driver camera image acquisition, wireless image transmission, receiving and storage, and tests show that the equipment to achieve the desir
7、ed stability requirements.AlphaKey words ARM Cortex-M uC/OSII wireless image transmission目 录第1章 绪 论11.1 课题背景11.2 图像无线传输发展现状2第2章 系统硬件设计32.1 系统框图32.2 系统硬件实现3第3章 系统软件设计143.1 无线模块驱动程序设计143.2 摄像头驱动程序设计173.3 LCD显示驱动程序设计193.4 文件系统21第4章 实时操作系统应用234.1 uC/OSII实时操作系统介绍234.2 在uC/OSII运行程序24第5章 系统实现315.1 图像无线传输系统
8、最终运行结果315.2 图像无线传输系统不足以及改进33结 束 语34参 考 文 献35附录1 各模块驱动程序一览36附录2 电路原理图39第1章 绪 论本章通过对智能家居和安防设备的需求分析及图像无线传输的发展现状,说明了现今以及未来人们希望图像监控能够无线获取,灵活操作和存取。1.1 课题背景如今摄像头监控、图像显示、无线数据传送和无线控制已经广泛地应用在人类生活及生产各个领域当中。如家电、汽车、交通安全、工业生产、电子电力等。在半导体集成电路芯片和数字技术没有广泛运用的过去,人类只能依赖超声波、红外传感、电磁等手段进行监控。对距离稍微远的场景使用来说,开发起来很麻烦,费工费,使用起来也不
9、是很方便。目前,国际先进的实时监控系统都实现了图像采集,并且有部分设备实现无线收发并显示的功能。以前在安防监控系统当中需要密密麻麻的装上一大堆传感器,如今已被一个拇指般大小的、毫不起眼的数字摄像头所替代了。OV系列的数字摄像头已经根据不同应用领域的不同需求推出了多款产品,性能良好、价格低廉。使得我们对图像传感器有了足够的选择。本课题研究的是图像采集系统中的无线传输和显示。在翻阅了大量资料后,决定以CMOS摄像头应用技术和嵌入式应用技术为核心进行开发。其中,涉及到了一些嵌入式实时操作系统应用开发、ARM技术开发应用、图像采集、TFT显示、2.4G无线传送模块的应用等。在对上述技术问题进行充分深入
10、地分析之后,制定了简便可行的技术方案。并且以理论分析和该技术方案为基础,在不断地实验和方案调整代码调试中,终于完成了一个可以应用在一般智能家居的图像无线传输系统的设计。完成系统设计之后,还通过一系列测试,测试结果证明,设计的图像无线传输系统,完全达到了课题预期制定的各项指标,成功地完成了课题的最终目标实现基于ARM cortex-M系列处理器的图像无线传输系统。1.2 图像无线传输发展现状图像无线传输具有十分广阔的应用前景,在军事、国防、工农业、城市管理、生物医疗、环境监测、危险区域等许多领域都有重要的科研价值和潜在的实用价值, 已经引起了人们广泛的关注。美国技术评论杂志把图像无线传感器视为未
11、来新兴十大技术的首位。美国早在上个世纪90年代就着手对无线传感器网络展开了先期研究,并在军方应用与推广。美国军方的远景研究计划局(DARPA)陆续支持了Wins、SmartDust等一系列重要的图像无线传感器项目。进入21世纪,随着传感器网络研究的深入发展,美国一些大型的IT企业(如Microsoft,Intel等)也通过与高校合作的方式加入到图像无线传感器的研究队列中来。当前美国许多著名的大学在进行无线传感器方面的研究工作,如哈佛大学专注于无线传感器通信理论的研究;加州大学伯克利分校致力于传感器节点的研究与开发,目前市面上比较流行的mica系列节点平台就是该分校的研究成果。在欧洲的一些国家,
12、如英国、意大利也在开展该领域的研究工作。相对而言,国内对无线传感器的研究起步较晚,但是我国对无线传感器的发展也非常重视。从2002年开始,国家自然科学基金委员会已经批准了和无线传感器相关的多个课题,在国家发展改革委员会的下一代互联网示范工程中,也部署了和无线传感器相关的课题。除此以外,中科院、清华大学、北京邮电大学、浙江大学和中国科技大学等众多高等院校也积极开展对无线传感器网络的研究。由于在很多领域有广阔的应用前景,无线传感器的研究开发工作众多。当前,对WSN的研究主要集中在通信协议、能耗管理、定位算法等方面。通信协议的研究约占研究点的35;其次是能耗管理,约占16;再次是定位算法、体系结构设
13、计和可靠性研究,三者共占研究点的24,然而在无线传感器的操作系统方面的研究相对较少。其实,WSN操作系统实现对硬件资源的抽象,并负责管理处理器、有限的内存等资源,它直接影响到系统的性能,因此研究WSN上的操作系统是很有必要的。此外,无线图像传输的研究还处于起步阶段,属于无线传感器领域内的一个新兴的研究课题,目前国内北京航天航空大学开始了这方面的研究。第2章 系统硬件设计本章介绍了图像无线传输系统的硬件组成及基本理论。2.1 系统框图摄像头模块发送端处理器ILI9325显示屏SD卡存储单元2.4G无线模块接受端处理器ILI9325显示屏SD卡存储单元2.4G无线模块能源供应部分能源供应部分图2-
14、1 图像无线传输工作原理框图处理器模块是整个传感器节点的核心部分,包括处理单元和存储单元,它负责控制整个节点的操作,处理所有相关数据;传感器模块是外围的设备的真正接口,负责监测区域内数据的采集和转换;无线通信模块负责与其他传感器节点进行无线通信,并传递数据;能量供应模块也就是传感器节点运行所需的电源,一般直接供电不太实际,通常采用微型电池。此外,还提供与用户的通信接口,方便与用户进行交互。图像无线传输工作原理框图见图2-1.2.2 系统硬件实现2.2.1 ARM处理器系统核心部分采用ARM处理器。ARM公司在经典处理器ARM11以后的产品改用Cortex命名,并分成A、R和M三类,旨在为各种不
15、同的市场提供服务。Cortex系列属于ARMv7架构,这是ARM公司最新的指令集架构。ARMv7架构定义了三大分工明确的系列:“A”(Application)系列面向尖端的基于虚拟内存的操作系统和用户应用,处理性能越来越接近于电脑,典型的产品有平板电脑、iphone、安卓手机和windows phone8;“R”(Realtime)系列针面向实时系统;“M”(Microcontroller)系列面向微控制器。由于应用领域不同,基于v7架构的Cortex处理器系列所采用的技术也不相同,基于v7A的称为Cortex-A系列,基于v7R的称为Cortex-R系列,基于v7M的称为Cortex-M系列
16、。本系统设计便使用了Cortex-M系列的处理器。ARM Cortex-M 处理器系列是一系列可向上兼容的高能效、易于使用的处理器,这些处理器旨在帮助开发人员满足将来的嵌入式应用的需要。这些需要包括以更低的成本提供更多功能、不断增加连接、改善代码重用和提高能效。 Cortex-M 系列针对成本和功耗敏感的 MCU 和终端应用(如智能测量、人机接口设备、汽车和工业控制系统、大型家用电器、消费性产品和医疗器械)的混合信号设备进行过优化。以更低的 MHz 或更短的活动时段运行基于架构的睡眠模式支持比 8/16 位设备的工作方式更智能、睡眠时间更长。多个供应商之间的全球标准代码兼容性统一的工具和操作系
17、统支持。每 MHz 提供更高的性能能够以更低的功耗实现更丰富的功能。现在的面世的Cortex-M 系列产品有Cortex-M0、M0+、M1、M3、M4。2.2.2发射端核心部分发射端核心部分采用STM32F407VGT6处理器,STM32F407VGT6属于先进的Cortex-M4F内核,FPU浮点运算能力,增强的DSP处理指令;更多的存储空间,高达1M字节的片上闪存高达196K字节的内嵌SRAM;灵活的外部存储器接口;极致的运行速度,以168MHz高速运行时可达到1.25DMIPS/MHz的处理能力。该处理器是由ARM专门开发的最新嵌入式处理器,用以满足需要有效且易于使用的控制和信号处理功
18、能混合的数字信号控制市场。高效的信号处理功能与Cortex-M处理器系列的低功耗、低成本和易于使用的优点的组合,旨在满足专门面向电动机控制、汽车、电源管理、嵌入式音频和工业自动化市场的新兴类别的灵活解决方案。片上资源有LCD并行接口,8080/6800模式;时钟,复位和电源管理1.8 V至3.6 V供电和I / O的POR,PDR,PVD和BOR4至26 MHz晶体振荡器内部16 MHz工厂调整的RC(精度为1)32 kHz振荡器作为RTC与校准内部32 kHz RC与校准睡眠,停机和待机模式VBAT供应RTC,2032位的备份寄存器+可选的4 KB备份SRAM;3个12位,2.4MSPS一个
19、A/D转换器:多达24通道,三重交叉模式下的性能高达7.2 MSPS;2个12位D / A转换器;通用DMA:具有FIFO和突发支持的16路DMA控制器;多达17个定时器:12个16位定时器,和2个频率高达168MHz的32位定时器,每个定时器都带有4个输入捕获/输出比较/PWM,或脉冲计数器与正交(增量)编码器输入;高级连接功能USB 2.0全速器件/主机/ OTG控制器,带有片上物理层USB的2.0 high-speed/full-speed设备/主机/ OTG控制器的专用DMA,片上全速PHY和ULPI10/100以太网MAC专用DMA:支持IEEE 1588v2的硬件,MII/RMII
20、;14位parallel-照相机接口:速度高达54MB/S。通用DMA:具有F?6?7?6?7IFO和突发支持的16路DMA控制器2个12位D / A转换器.LCD并行接口,8080/6800模式该处理器是由ARM专门开发的最新嵌入式处理器,用以满足需要有效且易于使用的控制和信号处理功能混合的数字信号控制市场。高效的信号处理功能与 Cortex-M 处理器系列的低功耗、低成本和易于使用的优点的组合,旨在满足专门面向电动机控制、汽车、电源管理、嵌入式音频和工业自动化市场的新兴类别的灵活解决方案。该处理器是由ARM专门开发的最新嵌入式处理器,用以满足需要有效且易于使用的控制和信号处理功能混合的数字
21、信号控制市场。高效的信号处理功能与 Cortex-M 处理器系列的低功耗、低成本和易于使用的优点的组合,旨在满足专门面向电动机控制、汽车、电源管理、嵌入式音频和工业自动化市场的新兴类别的灵活解决方案。该处理器是由ARM专门开发的最新嵌入式处理器,用以满足需要有效且易于使用的控制和信号处理功能混合的数字信号控制市场。高效的信号处理功能与 Cortex-M 处理器系列的低功耗、低成本和易于使用的优点的组合,旨在满足专门面向电动机控制、汽车、电源管理、嵌入式音频和工业自动化市场的新兴类别的灵活解决方案。2.2.3 接收端核心部分接收端核心部分使用STM32F103ZET6处理器,STM32F103Z
22、ET6处理器增强型系列使用高性能的ARM Cortex-M3 32位的RISC内核,ARM的Cortex-M3处理器是最新一代的嵌入式ARM处理器,以72MHz主频运行时可达到1.20 DMIPS/MHz的处理能力,它为实现MCU的需要提供了低成本的平台、缩减的管脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。 ARM的Cortex-M3是32位的RISC处理器,提供额外的代码效率,在通常8和16位系统的存储空间上发挥了ARM内核的高性能。片上资源有LQFP144脚LQFP144脚,512K 片内FLASH(相当于硬盘),64K片内RAM(相当于内存),片内FLASH 支持
23、在线编程(IAP);片内双RC晶振,提供8M和32K的频率;3路共16通道的12位AD输入,2路共2通道的12位DA输出;支持片外独立电压基准;8个定时器;3个SPI接口;2个IIC接口;2个IIS接口;5个USART通信接口;1个SDIO接口;1个USB微控制器;1个CAN微控制器。所有的I/O口都可作为外部中断触发端。这些丰富的外设配置,使得STM32F103xx增强型微控制器适合于多种应用场合:电机驱动和应用控制;医疗和手持设备;PC外设和GPS平台;工业应用,可编程控制器、变频器、打印机和扫描仪;警报系统,视频对讲,和暖气通风空调系统2.2.4 无线模块图2-2 NRF24L01+无线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 ARM_Cortex 处理器 图像 无线 传输 应用 毕业设计 论文 34
限制150内