高中数学必修知识点总结(15页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学必修知识点总结(15页).doc》由会员分享,可在线阅读,更多相关《高中数学必修知识点总结(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学必修知识点总结-第 15 页高中数学必修知识点总结 必修一一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性3集合的表示方法:列举法与描述法。非负整数集(即自然数集)记作:正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R二、集合间的基本关系1.对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B2、子集与真子集3. 不含任何元素的集合叫做空集,记为规定: 空集是任何
2、集合的子集, 空集是任何非空集合的真子集。三、集合的运算1交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作”A交B”),即AB=x|xA,且xB2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB3、交集与并集的性质:AA = A, A= , AB = BA,AA = A,A= A ,AB = BA.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(2)全集:如果集合S含有我们
3、所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:二、函数的有关概念1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底
4、必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.构成函数的三要素:定义域、对应关系和值域2、补充一:分段函数 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集补充二:复合函数如果y=f(u),
5、(uM),u=g(x),(xA),则 y=fg(x)=F(x),(xA) 称为f、g的复合函数。补充三:抽象函数3、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、配方法4、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法5、函数单调性(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f
6、(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(1) 定义法:任取x1,x2D,且x1x2;2 作差f(x1)f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上
7、的单调性)(2)复合函数的单调性:复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关(3)分段函数的单调性考点:单调性的应用6函数的奇偶性一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(
8、x)与f(x)的关系;3 作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数考点:(1)奇偶性的应用 (2)奇偶性与对称性 (3)奇偶性,对称性与周期性三: 基本初等函数 1、指数函数 2、对数函数 3、幂函数四: 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数f(x),把使f(x)=0成立的实数,叫做函数f(x)的零点。2、函数零点的意义:函数 f(x)的零点就是方程f(x)=0实数根,亦即函数f(x)的图象与x轴交点的横坐标3、函数零点的求法:求函数 f(x)的零
9、点:1 (代数法)求方程 f(x)=0的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数f(x)的图象联系起来,并利用函数的性质找出零点考点:判断方程零点的个数 高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: 注意下面四点:(1)当时,公式
10、右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如
11、:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(6)两直线平行与垂直当,时,注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离(10)两平行直
12、线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情
13、况,基本上由下列两种方法判断:(1)设直线,圆,圆心到l的距离为,则有;(2)设直线,圆,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有注:如果圆心的位置在原点,可使用公式去解直线与圆相切的问题,其中表示切点坐标,r表示半径。 (3)过圆上一点的切线方程:圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和
14、(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧
15、面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱
16、锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距
17、离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜
18、高,l为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=4、空间点、直线、平面的位置关系(1)平面 平面的概念: A.描述性说明; B.平面是无限伸展的; 平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。 点与平面的关系:点A在平面内,记作;点不在平面内,记作点与直线的关系:点A的直线l上,记作:Al; 点A在直线l外,记作Al;直线与平面的关系:直线l在平面内,记作l;直线l不在平面内,记作l。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 知识点 总结 15
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内