基于MATLAB的数字图像增强技术本科毕业设计(35页).doc
《基于MATLAB的数字图像增强技术本科毕业设计(35页).doc》由会员分享,可在线阅读,更多相关《基于MATLAB的数字图像增强技术本科毕业设计(35页).doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基于MATLAB的数字图像增强技术本科毕业设计-第 33 页 本科毕业设计题目 基于MATLAB的数字图像增强技术 基于MATLAB的数字图像增强技术摘要:数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术,数字图像处理技术已经在各个领域上都有了比较广泛的应用。数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。本文先对图像增强的原理以及各
2、种增强方法进行概述,然后着重对灰度变换、直方图均衡化增强方法进行了深入的研究,在学习数字图像的基本表示与处理方法的基础上,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,通过Matlab实验得出的实际处理效果,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。关键词:数字图像处理;图像增强;直方图均衡化;灰度变换 MATLAB-based digital image enhancement technologyAbstract: Digital image processing is an emerging technology, with the developm
3、ent of computer hardware, real-time digital image processing has become possible due to digital image processing algorithms to appear, making it faster and faster processing speed, better for People services .Digital image processing is used by some algorithms computer graphics image processing tech
4、nology. Digital image processing technology has been in various areas have a relatively wide range of applications.Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. In the image processing, image enhancement technology p
5、lays an important role in improving the quality of the image. This article first introduces the principles of image enhancement and various methods of image strengthening, and then focus on several methods to enhance in-depth study such as the gray transformation, histogram equalization, smoothing a
6、nd sharpening, and other commonly used in learning the basic digital image With the approach that on the basis of image enhancement for the universality of the problem, research and realization of common image enhancement methods and algorithms, through Matlab experiment that the actual effect of va
7、rious algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm The application of occasions, and its image enhancement method of performance evaluation. Keywords: Digitalimageprocessing; Image Enhancement; histogram equalization; gray transform 目 录摘要1Abst
8、ract1第一章 引言11.1 课题的背景及意义11.2 课题的主要内容1第二章 数字图像增强的基本理论12.1数字图像的基本概念12.2 图像增强概述12.3 图像增强概述12.4 图像增强的现状与应用10第三章 图像增强方法和原理13.1 图像变换13.2 灰度变换13.3 直方图变换13.4 图像平滑与锐化203.5 色彩增强1第四章 MATLAB基本知识介绍254.1 MATLAB的概述254.2 MATLAB产生的历史背景14.3 MATLAB语言的特点14.4 MATLAB在图像处理中的应用1第五章 图像增强算法与实现315.1图像的灰度315.2灰度直方图315.3 MATLAB
9、程序实例31结 论33致 谢1参考文献1第一章 引言人类传递信息的主要媒介是语言和图像。据统计在人类接受的各种信息中视觉信息占80%,所以图像信息是十分重要的信息传递媒体和方式。图像传递系统包括图像采集、图像压缩、图像编码、图像存储、图像通信、图像显示这六个部分。在实际应用中每个部分都有可能导致图像品质变差,使图像传递的信息无法被正常读取和识别。因此图像增强技术在图像的传递过程中很重要,是确保图像在传递过程中品质好坏的重要保障。1.1 课题的背景及意义 随着电子计算机技术的进步,计算机图像处理近年来得到飞跃的发展,已经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机
10、对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量。在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。尽管由于目的、观点、爱好等的不同,图像质量很难有统一的定义和标准,但是根据应用要求改善图像质量却是一个共同的目标。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除
11、不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以
12、评价。目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。如对x射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。1.2 课题
13、的主要内容图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。传统的图像增强算法在确定转换函数时常是图像变换、灰度变换、直方图变换、图像平滑与锐化、色彩增强等。常用的一些图像增强方法是学习图像增强的基础,至今它们对于改善图像质量仍发挥着重要的作用。本文着重研究了这些增强方法对图像进行增强处理,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,并对直方图均衡法做Matlab实例。 第二章 数字图像增强
14、的基本理论图像增强是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。2.1数字图像的基本概念2.1.1 数字图像的表示图像并不能直接用计算机来处理,处理前必须先转化成数字图像。早期一般用picture代表图像,随着数字技术的发展,现在都用image代表离散化了的数字图像。由于从外界得到的图像多是二维(2-D)的,一幅图像可以用一个2-D数组表示。这里x和y表示
15、二维空间XY中一个坐标点的位置,而f则代表图像在点的某种性质数值。为了能够用计算机对图像进行处理,需要坐标空间和性质空间都离散化。这种离散化了的图像都是数字图像,即都在整数集合中取值。图像中的每个基本单元称为图像那元素,简称像素。2.1.2 图像的灰度常用的图像一般是灰度图,这时f表示灰度值,反映了图像上对应点的亮度。亮度是观察者对所看到的物体表面反射光强的量度。作为图像灰度的量度函数应大于零。人们日常看到的图像一般是从目标上反射出来的光组成的,所以可看成由两部分构成:入射到可见场景上光的量;场景中目标对反射光反射的比率。确切地说它们分别称为照度成分和反射成分。与和都成正比,可表示成。将二维坐
16、标位置函数称为灰度。入射光照射到物体表面的能量是有限的,并且它永远为正,即0;反射系数为0时,表示光全部被物体吸收,反射系数为1时,表示光全部被物体反射,反射系数在全吸收和全反射之间,即01。因此图像的灰度值也是非负有界的。2.1.3 灰度直方图灰度直方图是数字图像处理中一个最简单、最有用的工具,它反映了数字图像中每一灰度级与其出现频率之间的统计关系。可以有针对性地通过改变直方图的灰度分布状况,使灰度均匀地或按预期目标分布于整个灰度范围空间,从而达到图像增强的效果。灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,如图2.1所示,(b)为图像(a)的灰度直方图,其横坐标表示像素
17、的灰度级别,纵坐标表示该灰度出现的频率(像素的个数)。(a) 原始图像 (b)原始图像灰度直方图图2.1 原始图像与相应灰度直方图2.2 图像增强概述随着数字技术的不断发展和应用,现实生活中的许多信息都可以用数字形式的数据进行处理和存储,数字图像就是这种以数字形式进行存储和处理的图像。利用计算机可以对它进行常现图像处理技术所不能实现的加工处理,还可以将它在网上传输,可以多次拷贝而不失真。数字图像处理亦称为计算机图像处理,指将图像信号转换成数字格式并利用计算机对其进行处理的过程。这项技术最早出现于20世纪50年代,当时的数字计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图
18、像处理成为一门独立的学科可追溯到20世纪60年代初期。1964年,美国喷气推进实验室利用计算机对太空船发回的月球图像信息进行处理,收到明显的效果,不久,一门称为数字图像处理的新学科便诞生了,而且很快便对通讯、电视传输、医学、印染工业、工业检测及科学研究领域产生了重大影响。数字图像处理系统主要由图像采集系统、数字计算机及输出设备组成。如图2.2所示。图2.2 数字图像处理系统图2.2仅仅是图像处理的硬件设备构成,图中并没有显示出软件系统,在图像处理系统中软件系统同样是非常重要的。在图像获取的过程中,由于设备的不完善及光照等条件的影响,不可避免地会产生图像降质现象。影响图像质量的几个主要因素是:(
19、1)随机噪声,主要是高斯噪声和椒盐噪声,可以是由于相机或数字化设备产生,也可以是在图像传输;(2)系统噪声,由系统产生,具有可预测性质;(3)畸变,主要是由于相机与物体相对位置、光学透镜曲率等原因造成的,可以看作是真实图像的几何变换。数字图像处理流程如图2.3所示,从一幅或是一批图像的最简单的处理,如特征增强、去噪、平滑等基本的图像处理技术,到图像的特征分析和提取,进而产生对图像的正确理解或者遥感图像的解译,最后的步骤可以是通过专家的视觉解译,也可以是在图像处理系统中通过一些知识库而产生的对图像的理解。图2.3 图像处理流程图数字图像处理技术起源比较早,但真正发展是在八十年代后,随着计算机技术
20、的高速发展而迅猛发展起来。到目前为止,图像处理在图像通讯、办公自动化系统、地理信息系统、医疗设备、卫星照片传输及分析和工业自动化领域的应用越来越多。但就国内的情况而言,应用还是很不普遍,人们主要忙于从事于理论研究,诸如探索图像压缩编码等,而对于将成熟技术转化为生产力方面认识还远远不够。California大学的Tony chen教授认为,目前国际上最常用的三种图像处理框架是:基于变换的图像处理框架;基于偏微分方程(PDE)的图像处理框架;基于统计学的图像处理框架。其中基于变换的图像处理框架主要在实现图像压缩上有优势,而基于偏微分方程(PDE)的图像处理框架在图像的噪声去除、边缘提取、图像分割上
21、有优势。事实上,除了这三种工具以外,数学形态学、神经网络等学科在图像去噪及图像分割方面也存在特有的优势。2.3 图像增强概述2.3.1 图像增强的定义图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到
22、一个好的代价函数达到需要的增强目的。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。2.3.2 常用的图像增强方法图像增强是按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些信息使得图像更加实用。图像增强技术主要包含直方图均衡化、对比度增强、平滑噪声和锐化等。(1) 直方图均衡化有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以
23、通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。(2) 对比度增强法有些图像的对比度比较低,从而使整个图像模糊不清。这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。(3) 平滑噪声有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 MATLAB 数字图像 增强 技术 本科 毕业设计 35
限制150内