高中数学必修2第三章知识点及练习题(6页).doc
《高中数学必修2第三章知识点及练习题(6页).doc》由会员分享,可在线阅读,更多相关《高中数学必修2第三章知识点及练习题(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学必修2第三章知识点及练习题-第 6 页第三章 直线与方程1、直线倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0.2、 倾斜角的取值范围: 0180. 当直线l与x轴垂直时, = 90.3、直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,常用小写字母k表示,也就是 k = tan。当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.当时,k随着的增大而增大; 当时,k随着的增大而增大; 当时,不存在。由
2、此可知, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率,再求倾斜角。三点共线的条件:如果所给三点中任意两点的连线都有斜率且都相等,那么这三点共线;反之,三点共线,任意两点连线的斜率不一定相等。解决此类问题要先考虑斜率是否存在。4、直线方程(注意各种直线方程之间的转化)直线的点斜式方程:,k为直线的斜率,且过点,适用条件是不垂直x轴。 注意:当直线的斜率为0时,k
3、=0,直线的方程是。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x0,所以它的方程是x=x0。斜截式:, k为直线的斜率,直线在y轴上的截距为b两点式:()直线两点,截矩式:,其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:在平时解题或高考解题时,所求出的直线方程,一般要求写成斜截式或一般式。各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); 5、直线系方程:即具有某一共同性质的直线(1)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数),所以平行
4、于已知直线的直线方程可设:垂直于已知直线(是不全为0的常数)的直线方程可设:(C为常数)(2)过定点的直线系斜率为k的直线系:,直线过定点;过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。6、两直线平行与垂直(1)当,时,注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(2)当,时,例:设直线经过点A(m,1)、B(3,4),直线经过点C(1,m)、D(1,m+1), 当(1) / / (2) 时,分别求出m的值7、两条直线的交点当 相交时,交点坐标是方程组的一组解。方程组无解;方程组有无数解与重合。8. 中点坐标公式:已知两点P1 (x1,y1)、P2(x2,y
5、2),则线段的中点M坐标为(,)例:已知点A(7,4)、B(5,6),求线段AB的垂直平分线的方程。9、两点间距离公式:设是平面直角坐标系中的两个点,则 10、点到直线距离公式:一点到直线的距离为11、两平行直线距离公式(1)两平行直线距离转化为点到直线的距离进行求解,即:先在任一直线上任取一点,再利用点到直线的距离进行求解。(2)两平行线间的距离公式:已知两条平行线直线和的一般式方程为l1:Ax+By+C1=0,l2:Ax+By+C2=0,则与的距离为一、选择题1若直线x1的倾斜角为 a,则 a( )A等于0B等于pC等于D不存在2图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则(
6、 )Ak1k2k3Bk3k1k2Ck3k2k1Dk1k3k2(第2题)3已知直线l1经过两点(1,2)、(1,4),直线l2经过两点(2,1)、(x,6),且l1l2,则x( )A2B2C4D14已知直线l与过点M(,),N(,)的直线垂直,则直线l的倾斜角是( )ABCD5如果AC0,且BC0,那么直线AxByC0不通过( )A第一象限B第二象限 C第三象限D第四象限6设A,B是x轴上的两点,点P的横坐标为2,且|PA|PB|,若直线PA的方程为xy10,则直线PB的方程是( )Axy50B2xy10C2yx40D2xy707过两直线l1:x3y40和l2:2xy50的交点和原点的直线方程为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 第三 知识点 练习题
限制150内