平面向量公式37467(3页).doc
《平面向量公式37467(3页).doc》由会员分享,可在线阅读,更多相关《平面向量公式37467(3页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
-平面向量公式37467-第 2 页平面向量向量:既有大小,又有方向的量 数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度零向量:长度为的向量单位向量:长度等于个单位的向量平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式:运算性质:交换律:;结合律:; 坐标运算:设,则向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则向量数乘运算:实数与向量的积是一个向量的运算叫做向量的数乘,记作;当时,的方向与的方向相同; 当时,的方向与的方向相反; 当时,运算律:;坐标运算:设,则向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,其中,则当且仅当时,向量、共线平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使(不共线的向量、作为这一平面内所有向量的一组基底)分点坐标公式:设点是线段上的一点,、的坐标分别是,当时,点的坐标是(当时,为中点公式。)平面向量的数量积:零向量与任一向量的数量积为性质:设和都是非零向量,则当与同向时,;当与反向时,;或运算律:;坐标运算:设两个非零向量,则若,则,或 设,则设、都是非零向量,是与的夹角,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 公式 37467
限制150内