基于PLC控制的恒压供水系统设计毕业设计(论文)(31页).doc
《基于PLC控制的恒压供水系统设计毕业设计(论文)(31页).doc》由会员分享,可在线阅读,更多相关《基于PLC控制的恒压供水系统设计毕业设计(论文)(31页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基于PLC控制的恒压供水系统设计毕业设计(论文)-第 26 页毕业设计(论文)基于PLC控制的恒压供水系统设计北京航空航天大学本科毕业设计(论文)任务书、毕业设计(论文)题目:基于PLC控制的恒压控制供水系统设计 、毕业设计(论文)使用的原始资料(数据)及设计技术要求:1、基于PLC的变频恒压供水系统的设计 2、基于PLC和变频器的恒压供水泵站系统设计 3、基于PLC的恒压变频供水系统的研制 4、PLC及变频器恒压供水控制系统设计 、毕业设计(论文)工作内容:1、查阅相关专业方面的资料,选题 2、根据资料撰写开题报告 3、继续搜集并翻阅相关资料书籍,完成论文初稿 4、根据指导老师的修改意见,
2、完成论文的终稿 、主要参考资料:1、岂兴明.PLC与变频器 2、李方园.西门子S7-200 PLC从入门到实践 3、彭小红,刘志东.基于PLC的变频调速恒压供水系统的设计 4、林俊赞,李雄松,尹元日.PLC在恒压供水控制系统中的应用 5、姜兴忠,戴恒阳.变频恒压控水系统的机理分析 校外学习中心 理工科类 专业类学生(学号) 12934202146 毕业设计(论文)时间: 自 2014年 6月20日至 2014 年10月 20 日指导教师: 陈燕 兼职教师(并指出所负责部分): 校外毕设组织协调小组(签字): 注:任务书应该附在已完成的毕业设计(论文)的首页。本人声明我声明,本论文及其研究工作是
3、由本人在导师指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。作者:王静签字:时间:2014年 10 月基于PLC控制的恒压供水系统设计摘 要本设计根据城市小区的供水要求,设计了一套基于PLC控制的变频调速恒压供水系统。该系统由PLC、变频器、水泵机组、压力变送器等构成。本系统利用变频器实现对三相水泵电机的变频调速,采用“先启先停”的原则切换运行水泵。压力传感器检测水压信号,送入PLC并与设定值比较进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速和供水量。这样使管网水压力始终保持在设定值附近,从而实现恒压供水。关键词:PLC,变频调速,PID控制,恒压供
4、水Design Of Constant Pressure Water SupplyControl System Based On PLCAbstractAccording to the design ofcitywater supplyrequirements,designed a system based onvariable frequency speedconstant pressure water supplysystem controlled by PLC.The system is composed ofPLC,inverter,water pump,pressure transm
5、itterform.The system uses thefrequency converter to realize thevariable frequency speed controlof three-phasemotor pump,usingopen firstprinciple ofswitchingoperation of the pumptostop.The pressuresensor to detect thepressuresignalinto PLC,andcompared with the set valuefor PID operation,so as tocontr
6、ol the inverteroutputvoltage and frequency,and thenchange the speed andvolume of water supplypump motor.So that thepipe network waterpressure is always kept in anear set value,so as to realize theconstant pressure water supply.Key words: PLC;Frequency control;PID control;Constant pressure water supp
7、ly目 录1 绪论.4 1.1 课题背景及意义41.2 变频恒压供水系统的国内外研究现状41.3 本课题主要研究内容52 恒压供水系统总体方案设计.52.1 系统的主要结构及组成.52.2 PLC 概述及其系统组成.62.3 变频器简介及选型.62.3.1 变频器简介.62.3.2 变频器的基本结构73 系统硬件选择及系统电路设计.93.1 硬件选择.93.2 系统主电路分析及其设计.123.3 系统控制电路分析及其设计.123.4 PLC的I/O端口分配及外围接线图.154 系统的软件设计18 4.1 系统软件设计分析.184.2 PLC程序设计.194.3 PID控制器参数整定.26结论.
8、29致谢.30参考文献.311 绪论1.1课题背景及意义城市中各类小区的供水系统是小区众多基础设施当中的一个重要组成部分。由于传统的小区供水方式具有各自不同的缺陷,如恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,供水机组运行效率低、耗电量大,电动机硬启动易产生水锤效应等缺点,传统供水系统的工作性能直接影响到小区居民的正常生活。另一方面,由于供水的随机性,采用传统方法供水难以保证实时,水泵的选择往往是由最大供水确定,而最高水位时间短,不仅泵效低,水压不稳定,造成了浪费大量电力,远远不能满足生活和生产需要。随着电力电子技术和计算机技术的发展,变频调速供水系
9、统由于成本低,施工简便,节能效果显着,自动化控制,无二次污染,已被越来越广泛的应用。PLC性能稳定,成本低,功能强大,编程方便的特点,采用变频控制技术相结合,设计了基于可编程控制器的变频调速供水系统。该设计以最小的投资体制,实现了多功能供水系统要求。在提倡节能减排的今天,具有很好的经济和社会意义。1.2变频恒压供水系统的国内外研究现状从查阅的资料的情况来看,国外的恒压供水系统在设计时都采用一台变频器只带一台水泵的方式,几乎没有用一台变频器拖动多台水泵的情况,因而投资成本高。随着变频技术的发展和变频恒压供水系统的稳定性提高,国外厂家开始重视并推出具有恒压供水功能的变频器,日本Samc公司,就推出
10、了恒压供水基板,备有“变频泵固定方式”和“变频泵循环方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作。虽然这些设备采用微型电路结构,降低设备成本,但缺乏灵活性输出接口,系统的动态性能和稳定性不高,和其他监测系统和组态软件是很难实现数据通信,带负荷能力的限制,所以在实际使用的范围将是有限的。由此可以看出,国内和国际研究变频调速恒压供水系统中,在与现代控制技术,网络和通信技术系统相结合,闭环压力控制方面做的是不够的。因此,需进一步研究,以提高恒压供水
11、系统的性能,使其能更好地应用于生活和生产实践。1.3本课题主要研究内容本课题从实际应用出发,针对一般系统中存在的几个缺陷,设计出了基于PLC的变频调速恒压供水系统,具有以下优点:(l)系统具有较高的恒压精度。(2)系统能长时间稳定可靠运行。(3)有友好的用户操作界面。2 恒压供水系统总体方案设计2.1 系统的主要结构及组成本设计中,系统的控制机构由PLC和通用变频器构成,系统的整体结构如图2-1所示。可以看出,水泵拖动机组供水管道水泵机组的控制单元以及信号检测环节构成生活小区的供水系统。图2-1中,液位检测机构把测量的水箱水位信号送入到变频控制柜,经过PLC程序的运算处理,输出运行与停止控制信
12、号,控制水泵启动与停止工况的转换。图2-1生活小区公示系统示意图2.2 PLC概述及其系统组成PLC是一种数字运算操作的电子系统,它采用一类可编程的存储器,用于其内部存储程序,逻辑运算,顺序控制,定时可编程记忆,计数等面向用户的指令,通过数字输入和输出控制各种类型的机械或生产过程。可编程控制器和外部设备和工业控制系统轻松地联成一个整体 ,以扩大其功能设计的原则。图2-2可编程控制器的基本结构。PLC有着其它工业控制设备难具备的优点:高可靠性,丰富的I/O接口模块,采用模块化结构,编程方便,易于使用。2.3 变频器简介及选型2.3.1 变频器简介交流变频器是微计算机及现代电力电子技术高度发展的结
13、果。微计算机是变频器的核心,电力电子器件构成了变频器的主电路。我们知道,从发电厂送出的交流电的频率是恒定不变的,在我国是每秒50Hz。而交流电动机的同步转速 式中-同步转速,r/min; -定子频率,Hz; -电机的磁极对数。而异步电动机转速式中-异步电机转差率,一般小于3%,均与送入电机的电流频率成正比例。因而,改变频率可以方便地改变电机的运行速度,也就是说变频对于交流电机的调速来说是十分合适的。2.3.2 变频器的基本结构依据频率变换的形式来分,变频器分为交-交和交-直-交两种形式。交-交变频器将工频交流电直接变换成频率、电压均可控制的交流电,称为直接式变频器。而交-直-交变频器则是先把工
14、频交流电通过整流变成直流电。然后再把直流电变换成频率、电压均可控制的交流电又称间接式变频器。市售通用变频器多是交-直-交变频器,其基本结构图如图2-3所示,图2-3交-直-交变频器的基本结构它由主回路,包括整流器、中间直流环节、逆变器和控制回路组成,现将各部分的功能分述如下:(1)整流器。电网侧的变流器是整流器,其作用是把三相(可以是单相)交流整流成直流。(2)直流中间电路。直流中间电路的作用是平滑输出电流,以确保逆变电路和控制电源得到高品质的直流电。由于逆变器的负载多为异步电动机,属于感性负载。所以其功率因数总不会为1。因此,中间直流环节和电动机之间总会有无功功率交换。(3)逆变器。负载侧的
15、变流器为逆变器。逆变器的主要作用是在控制电路的控制下将直流平滑输出电路的直流电转换为频率及电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出。(4)控制电路。变频器的控制电路包括主控制电路、信号检测电路、栅极驱动电路、外部接口电路及保护电路等几个部分。其主要任务是完成对逆变器的开关控制,对整流器的电压控制及完成各种保护功能。 一般三相变频器的整流电路由三相全波整流桥组成。直流中间电路的储能元件在整流电路是电压源时是大容量的电解电容,在整流电路是电流源时是大容量的电感。逆变电路最常见的结构形式是利用6个半导体主开关器件组成的三桥式逆变电路。有规律的控制逆变器中主开关的通与断,可以得到任
16、意频率的三相交流输出。图2-4为电流型变频器主电路基本结构示意图。 电源M电动机平滑电容+-M电动机平滑电感电源(a)(b) 图2-4电压型变频器和电流型变频器主电路基本结构(a) 电压型变频器主电路;(b)电流型变频器主电路3 系统硬件选择及系统电路设计根据基于PLC的变频恒压供水系统的原理,系统的电气控制总框图如图3-1所示:图3-1系统的电气控制总框图由以上系统电气总框图可以看出,该系统的主要硬件设备应包括以下几部分:(1) PLC及其扩展模块、(2) 变频器、(3) 水泵机组、(4) 压力变送器、(5) 液位变送器。主要设备选型如表3.1所示:表3-1 本系统主要硬件设备清单主要设备型
17、号及其生产厂家可编程控制器(PLC)Siemens CPU 226模拟量扩展模块Siemens EM 235变频器Siemens MM440水泵机组SFL系列水泵3台(上海熊猫机械有限公司)压力变送器及显示仪表普通压力表Y-100、XMT-1270数显仪液位变送器分体式液位变送器DS263.1 硬件选择3.1.1 PLC及其扩展模块的选型PLC是整个变频恒压供水控制系统的核心,它要完成对系统中所有输入号的采集、所有输出单元的控制、恒压的实现以及对外的数据交换。因此在选择PLC时,要考虑PLC的指令执行速度、指令丰富程度、内存空间、通讯接口及协议、带扩展模块的能力等多方面因素。由于恒压供水自动控
18、制系统控制设备相对较少,因此PLC选用SIEMENS公司的S7-200型。S7-200型PLC具有较高的性价比,广泛适用于一些小型控制系统;又具有可靠性高,可扩展性好,有较丰富的通信指令,且通信协议简单等优点。根据控制系统实际所需端子数目,考虑PLC端子数目要有一定的预留量,因此选用的S7-200型PLC的主模块为CPU226,其开关量输出为16点,输出形式为AC220V继电器输出;开关量输入为24点,输入形式为+24V直流输入。由于实际中需要模拟量输入点1个,模拟量输出点1个,所以需要扩展,扩展模块选择的是EM235,该模块有4个模拟输入(AIW),1个模拟输出(AQW)信号通道。输入和输出
19、信号,可自动完成A/ D转换,标准输入信号可以转换成一个字数字信号,输出信号则可以自动完成端口的D / A转换,一个字的数字信号转换成标准的输出信号。 EM235模块由DIP设置不同的标准,切换输入信号。3.1.2 变频器的选型变频器是本系统控制执行机构的硬件,通过频率的改变实现对电机转速的调节,从而改变出水量。变频器的选择必须根据水泵电机的功率和电流进行选择。由于本设计中PLC选择的西门子S7-200型号,为了方便PLC和变频器之间的通信,选择西门子的MicroMaster440变频器。它是用于三相交流电动机调速的系列产品,由微处理器控制,采用绝缘栅双极型晶体管作为功率输出器件,具有很高的运
20、行可靠性和很强的功能。它采用模块化结构,组态灵活,有多种完善的变频器和电动机保护功能,有内置的RS-485/232C接口和用于简单过程控制的PI闭环控制器,可以根据用户的特殊需要对I/O端子进行功能自定义。MicroMaster440变频器的输出功率为0.7590KW,适用于要求高、功率大的场合,恰好其输出信号能作为75KW的水泵电机的输入信号。3.1.3 水泵机组的选型水泵机组选型基本原则,一是要确保平稳运行;二是要经常处于高效区运行,以求取得较好的节能效果。要使泵组常处于高效区运行,则所选用的泵型必须与系统用水量的变化幅度相匹配。本设计的要求为:电动机额定功率75KW,供水压力控制在0.3
21、0.01Mpa。根据本设计要求并结合实际中小区生活用水情况,最终确定采用3台上海熊猫机械有限公司生产的SFL系列水泵机组(电机功率75KW)。它可用在城市给排水、锅炉给水、空调冷却系统、消防给水等。3.1.4 压力变送器的选型压力变送器用于检测管网中的水压,常装设在泵站的出水口,作为模拟输入模块(A/D模块)的输入。在选型时,为防止传输过程中的干扰与损耗,通常采用420mA输出压力变送器。在运行过程中,当压力变送器出现故障时,系统有可能启动所有的水泵,如果此时的用水量又达不到,则会造成水压过高。为防止爆管和超高水压损坏用水设备,本设计中的供水系统采用电极点压力表的压力上限输出,作为PLC的一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 PLC 控制 供水系统 设计 毕业设计 论文 31
限制150内