基于数字PID的电机速度控制系统设计_课程设计任务书(12页).doc
《基于数字PID的电机速度控制系统设计_课程设计任务书(12页).doc》由会员分享,可在线阅读,更多相关《基于数字PID的电机速度控制系统设计_课程设计任务书(12页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-基于数字PID的电机速度控制系统设计_课程设计任务书-第 7 页课程设计任务书学 院专 业学生姓名班级学号课程设计题目基于数字PID的电机速度控制系统设计实践教学要求与任务:1) 构成电机速度控制系统2) 硬软件设计3) 实验调试4) THFCS-1现场总线控制系统实验5) 撰写实验报告工作计划与进度安排:1) 第12天,查阅文献,构成电机速度控制系统2) 第34天,硬软件设计3) 第56,实验调试 4)第79天,THFCS-1现场总线控制系统实验 5)第10天,撰写实验报告指导教师: 201 年 月 日专业负责人:201 年 月 日学院教学副院长:201 年 月 日目录1电机硬件控制电路2
2、1.1硬件电路器件选型21.2 硬件电路设计方案21.3 硬件电路的PCB设计42 PID控制算法52.1 比例、积分、微分控制52.2 PID控制器的参数整定73 基于数字PID控制程序的设计73.1 数字PID与模拟PID控制算法73.2 数字PID控制程序84总 结8附录9参考文献12摘 要在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,
3、系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。PID控制算法分为模拟PID和数字PID两种。模拟PID就是在现场安装的利用DDZII或者DDZIII型表再加上其他气动仪表的模块,对现场控制变量的模拟信号利用旋钮或拨盘对PID的三个值进行设定对或者手动控制输出的系统,其信号均为模拟信号。数字PID就是把现场的控制变量的模拟信号和对现场受控变量的
4、输出信号均转换成了数字信号,PID的实现也是通过数字信号的设定来完成的。现在大多在DCS、PLC系统内完成的。本设计是基于数字PID的电机调速计算机控制系统的设计,针对不同的电机对其PID控制参数进行相应的整定从而使电机工作以更高的效率、更好的调速性能工作!关键词:系统参数;数字PID;计算机控制系统1电机硬件控制电路1.1 硬件电路器件选型电机驱动电路的开关器件选择英飞凌公司的BTS7960。BTS7960 是 NovalithIC 家族三个独立的芯片的一部分:一是 p 型通道的高电 位场效应晶体管, 二是一个 n 型通道的低电位场效应晶体管, 结合一个驱动晶片, 形成一个完全整合的高电流半
5、桥。所有三个芯片是安装在一个共同的引线框,利 用芯片对芯片和芯片芯片技术。 电源开关应用垂直场效应管技术来确保最佳的阻 态。由于 p 型通道的高电位开关,需要一个电荷泵消除电磁干扰。通过驱动集成 技术,逻辑电平输入、电流取样诊断、转换速率调整器,失效发生时间、防止欠 电压、过电流、短路结构轻易地连接到一个微处理器上。BTS7960 可结合其他的 BTS7960 形成全桥和三相驱动结构。1.2 硬件电路设计方案电机控制从控制方法上可以分为开环控制和闭环控制两种。开环控制在用法上比较简单,只需考虑输出,不需要反馈信号,使用上比较简单,但是其缺点是速度控制的精度比较低,不能适应不同的赛道环境。另外一
6、种为闭环控制,电机的速度控制信号输出由需要的速度和电机的实际转速二者决定,即需要对电机的实际转速进行采集和反馈。这种做法的好处是控制精度比较高,电机调速性能比较理想。通常情况下的电机转速的闭环控制,是通过软件的自动控制算法实现的,需要将电机的转速反馈给S12,通过软件上的自动控制算法,由需要的速度同实际的速度的偏差,给出纠正值,达到对速度的稳定控制。但是这样一来将会增加S12的负担。而我们的智能车利用CCD进行识别,使微控制器更多的关注图像的采集及处理是我们设计时一直注意的问题。因此我们在电机驱动电路上下了很大的功夫,最终确定了一种硬件的闭环控制方案。这种方案使用了光电编码器或测速发电机完成电
7、机速度信号的采集。测速发电机输出的电压大小表征了电机的实际转速。这一电压同S12输出的PWM信号的积分值进行比较,由它们的偏差控制电机该加速还是减速。在电机驱动上,我们用MOS管作为分立元件搭建了H桥驱动电路,如图1.1所示,简化H桥驱动电路如图1.2所示。通过逻辑设计,可以让电机处于多种模式下工作,经过在赛道上对赛车进行试验,电机的加减速效果很好,完全可以满足赛车对不同赛道加减速的要求,可以达到对电机的调速控制要求。电机的工作模式如表1所示。图1.1 驱动电路原理图图1.2 H桥电机驱动电路表1 电机工作模式模式(nENABLE = 0):HIN1nLIN1HIN2nLIN20, 自由正转模
8、式 1, 自由反转模式2, 带制动的正转模式3, 带制动的反转模式4, 双极驱动的正转模式5, 双极驱动的反转模式6, 全速前进7, 停止(刹车)nENABLE = 1PWMLPWMnPWM PWMnPWMHLLHnPWMPWMnPWMPWMnPWMHLHLHL HnPWMPWMLLLLHLHnPWMPWM LLH1.3 硬件电路的PCB设计图1.3 驱动电路PCB图1.4 驱动电路PCB2 PID控制算法2.1 比例、积分、微分控制PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e(t)与输出u(t)的关系为: u(t)=kpe(t)+1/TIe(t)dt+TD*de
9、(t)/dt式中积分的上下限分别是0和t。因此它的传递函数为:G(s)=U(s)/E(s)=kp1+1/(TI*s)+TD*s其中kp为比例系数;TI为积分时间常数;TD为微分时间常数。图1.1 PID控制的方块图比例(P)控制。比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 积分(I)控制。在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制
10、器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制。在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 数字 PID 电机 速度 控制系统 设计 课程设计 任务书 12
限制150内