牛顿-拉夫森(Newton-Raphson)迭代法(6页).doc





《牛顿-拉夫森(Newton-Raphson)迭代法(6页).doc》由会员分享,可在线阅读,更多相关《牛顿-拉夫森(Newton-Raphson)迭代法(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-牛顿-拉夫森(Newton-Raphson)迭代法-第 6 页3.4 牛顿迭代法牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。 牛顿迭代法用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式:1设,对在点作泰勒展开:略去二次项,得到的线性近似式:。由此得到方程0的近似根(假定0),即可构造出迭代格式(假定0): 公式()这就是牛顿迭代公式,若得到的序列收敛于,则就是非
2、线性方程的根。2 牛顿迭代法也称为牛顿切线法,这是由于的线性化近似函数是曲线过点的切线而得名的,求的零点代之以求的零点,即切线与轴交点的横坐标,如右图所示,这就是牛顿切线法的几何解释。实际上,牛顿迭代法也可以从几何意义上推出。利用牛顿迭代公式,由得到,从几何图形上看,就是过点作函数的切线,切线与轴的交点就是,所以有,整理后也能得出牛顿迭代公式:3 要保证迭代法收敛,不管非线性方程0的形式如何,总可以构造:作为方程求解的迭代函数。因为:而且在根附近越小,其局部收敛速度越快,故可令:若0(即根不是0的重根),则由得:,因此可令,则也可以得出迭代公式:。4 迭代法的基本思想是将方程改写成等价的迭代形
3、式,但随之而来的问题却是迭代公式不一定收敛,或者收敛的速度较慢。运用前述加速技巧,对于简单迭代过程,其加速公式具有形式:,其中记,上面两式可以合并写成:这种迭代公式称作简单的牛顿公式,其相应的迭代函数是:。需要注意的是,由于是的估计值,若取,则实际上便是的估计值。假设,则可以用代替上式中的,就可得到牛顿法的迭代公式:。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程逐步归结为某种线性方程来求解。 牛顿迭代法的收敛性牛顿迭代公式可以看成是由而获得的不动点迭代格式。这样就可以应用不动点迭代的收敛原则,只须证明在根附近的迭代函数是一个压缩映象。由于:,这里的根是单根,即且,于是:。那么由的
4、连续性可知,存在一个邻域,对这个邻域内的一切,有:,其中O1,因此为区间上的一个压缩映象,于是有以下结论: 定理 设,是的精确解,且,则存在的邻域,对于任何迭代初值,迭代序列收敛于。牛顿迭代法具有较高的收敛速度,它的收敛阶数为2;而牛顿迭代法的局部收敛性较强,只有初值充分地接近,才能确保迭代序列的收敛性。为了放宽对局部收敛性的限制,必须再增加条件建立以下收敛的充分条件。定理 设,且满足:在区间上, 不变号; ,满足条件:则牛顿迭代序列,单调地收敛于方程的唯一解。由条件至条件可归结为四种情形:对定理的几何意义作如下说明:条件保证了根的存在性;条件表明函数单调变化,在区间内有惟一的根;条件表示函数
5、图形在区间上的凹向不变。条件和条件一起保证了每一次迭代值都界于区间内。在不满足上述收敛充分条件时,有可能导致迭代值远离所求根的情况或死循环的情况(如下图所示)。【例】对于给定的正数,用牛顿法建立求平方根的收敛迭代公式。 解 令,(0),则的正根就是。用牛顿法求解的迭代公式是:, 公式()由于当0时,0,0,故由收敛定理可知,对于任意满足条件的初始近似值,由选代公式所产生的序列必定收敛于平方根。公式()是计算平方根的准确而有效的计算方法。 牛顿迭代法的变形用牛顿法解方程,虽然在单根附近具有较快的收敛速度,但它有个明显的缺点,就是每次都要计算导数,当比较复杂时,计算可能很困难。下面介绍两种克服这种
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 牛顿 拉夫森 Newton Raphson 迭代法

限制150内