《数的分类和概念(4页).doc》由会员分享,可在线阅读,更多相关《数的分类和概念(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数的分类和概念-第 4 页数的分类和概念我们把0、1、2、3、4、5、6、7、8、9、10、 等全体非负整数组成的数集合称为“自然数”。把1,2,3,9,10向前扩充得到正整数1,2,3,9,10,11,把它反向扩充得到负整数,-11,-10,-9,-3,-2,-1 ,介于正整数和负整数中间的“0”为中性数;把它们合在一起,得到 ,-11,-10,-9,-3,-2,-1, 0,1,2,3,9,10,11, , 叫做整数。对整数可以施行加、减、乘、除四种运算,叫做四则运算。整数,对加、减、乘运算组成了一个封闭的数集合,是数学古老分支“数论”研究的对象。著名的德国数学家高斯说:“数学是科学的皇后
2、,数论是数学中的皇冠”。 德国数学家、数学王子高斯(Gauss,17771855)除法运算,如7/11 = 0.636363 、11/7 = 1.5714285 ,不再是整数,也就是说整数对除法运算是不封闭的。为了使数集合对加、减、乘、除四则运算都是封闭的,就必须增加新的数,如 7/11、11/7,为两个整数之比,称为可比数、分数,现在通称为有理数。 把数的性质、数和数之间的四则运算在应用过程中的经验进行总结和整理,形成最古老的一门数学算术。 有理数集合,对加、减、乘、除四则运算组成了一个封闭的数集合,看起来似乎已很完备。2500多年前,不少人、甚至当时一些数学家也是这样看的。公元前世纪,当时
3、的毕达哥拉斯学派很重视整数,想用它说明一切,“数是万物之本”成了他们的哲学观。毕达哥拉斯学派的学生希帕索斯在研究1和2的比例中项 x 时,由1/x = x/2,得到代数方程x2 = 2 (1)在(1)中引入的 x,代表我们暂时还不知道一个数,称为未知数。对(1)求解,得到x = 。显然,1 x 2,不是整数;经证明,不能表成两个整数之比,也不是有理数;这就是后来称为“无理数”的数。无理数的发现,对以整数为基础的毕氏哲学,是一次致命的打击,数学史上把这件事称为“第一次数学危机”。在 之后,又发现了很多无理数,圆周率就是其中最重要的一个。15世纪意大利著名画家达芬奇把它称之为“无理之数”。现在,人
4、们把有理数和无理数合并在一起,称为“实数”。把方程(1)中2换成-2时,得到x2 = -2 (2)由此得到两个解:x1 = 和 x2 = - ,它们还是(2)的解吗?如果认为不是,(2)就没有解,解方程如同走进了死胡同。为解决这一问题,数学家不得不再次扩大数的范围,引入符号“”表示“1的平方根”,即 i = ,称为虚数;再把实数a、b和虚数结合起来,组成 z = 形式的数,称为“复数”。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,让人感到有点虚无缥缈。随着科学的发展,虚数在水力学、地图学和航空学上得到了广泛的应用。这样,数的家族就进一步扩大,包括实数和复数两大类,并把加、减、
5、乘、除的四则算术运算扩展到包括乘方和开方的六种代数运算,形成了数学中一个新的分支“代数”。代数进一步向两个方面发展,一是研究未知数更多的一次方程组,引进矩阵、向量、空间等符号和概念,形成 “线性代数”;另一是研究未知数次数更高的高次方程,形成“多项式代数”。这样,代数研究的对象,不仅是数,还包括矩阵、向量、向量空间及其变换等。它们都可以进行“运算”,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再有效。因此,代数学的内容可以概括称为带有运算的一些代数结构的集合,如群、环、域等,又含抽象代数、布尔代数、关系代数、计算机代数等众多分支。由于科学技术发展的需要,数的范围不断扩大,从正整数、自然数、整数、实数到复数,再到向量、张量、矩阵、群、环、域等不断的扩充与发展。为区别起见,人们把实数和复数称为“狭义数”,把向量、张量、矩阵等称为“广义数”。尽管人们对数如何分类还有一些不同的看法,但都承认数的概念还会不断扩充和发展。到目前为止,数的家族已发展得十分庞大,可表示为:
限制150内