数列通项公式和前n项和求解方法(全)(6页).doc
《数列通项公式和前n项和求解方法(全)(6页).doc》由会员分享,可在线阅读,更多相关《数列通项公式和前n项和求解方法(全)(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数列通项公式和前n项和求解方法(全)-第 6 页数列通项公式的求法详解一、 观察法(关键是找出各项与项数n的关系.)例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,(2)(3)(4)答案:(1) (2) (3) (4).二、 公式法 公式法1:特殊数列例2: 已知数列an是公差为d的等差数列,数列bn是公比为q的(qR且q1)的等比数列,若函数f (x) = (x1)2,且a1 = f (d1),a3 = f (d+1),b1 = f (q+1),b3 = f (q1),求数列 a n 和 b n 的通项公式。答案:an=a1+(n1)d = 2(n1); b
2、n=bqn1=4(2)n1例3. 等差数列是递减数列,且=48,=12,则数列的通项公式是( ) (A) (B) (C) (D) 答案:(D)例4. 已知等比数列的首项,公比,设数列的通项为,求数列的通项公式.简析:由题意,又是等比数列,公比为,故数列是等比数列,易得.点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比.公式法2: 知利用公式 .例5:已知下列两数列的前n项和sn的公式,求的通项公式.(1). (2)答案:(1)=3,(2)点评:先分n=1和两种情况,然后验证能否统一.三、累加法 【型如的地退关系递推关系】简析:已知,,其中f(n)可以是关
3、于n的一次、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和; 若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的二次函数,累加后可分组求和; 若f(n)是关于n的分式函数,累加后可裂项求和各式相加得 例5:已知数列6,9,14,21,30,求此数列的一个通项. 答案:例6. 若在数列中,求通项. 答案:=例7.已知数列满足,求此数列的通项公式. 答案:四、累积法 【 形如=(n)型】(1)当f(n)为常数,即:(其中q是不为0的常数),此时数列为等比数列,=.(2)当f(n)为n的函数时,用累乘法.例8:在数列中, =
4、1, (n+1)=n,求的表达式. 例9: 已知数列中,前项和与的关系是 ,试求通项公式. .答案: 思考题1:已知,求数列an的通项公式.分析:原式化为 若令,则问题进一步转化为形式,累积得解.五、构造特殊数列法构造1:【形如,其中)型】 (1)若c=1时,数列为等差数列; (2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设,得,与题设比较系数得, 所以:,即构成以为首项,以c为公比的等比数列.例10:已知数的递推关系为,且求通项. 答案:构造2:相邻项的差为特殊数列例11:在数列中,求.提示:变为.构造3:倒数为特殊数列【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 公式 求解 方法
限制150内