新人教版七年级下册实数课时练习题(15页).doc
《新人教版七年级下册实数课时练习题(15页).doc》由会员分享,可在线阅读,更多相关《新人教版七年级下册实数课时练习题(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-新人教版七年级下册实数课时练习题-第 15 页6.1平方根同步练习(1)知识点:1.算术平方根:一般地,如果一个正数的平方等于a,那么这个正数叫做a的算术平方根。A叫做被开方数。1. 平方根:如果一个数的平方等于a,那么这个数叫做a的平方根2. 平方根的性质:正数有两个平方根,互为相反数 0的平方根是0 负数没有平方根同步练习: 一、基础训练 1(05年南京市中考)9的算术平方根是( ) A-3 B3 C3 D81 2下列计算不正确的是( )A=2 B=9 C=0.4 D=-6 3下列说法中不正确的是( ) A9的算术平方根是3 B的平方根是2 C27的立方根是3 D立方根等于-1的实数是-
2、1 4的平方根是( ) A8 B4 C2 D 5-的平方的立方根是( ) A4 B C- D 6的平方根是_;9的立方根是_ 7用计算器计算:_(保留4个有效数字) 8求下列各数的平方根 (1)100;(2)0;(3);(4)1;(5)1;(6)009 9计算:(1)-;(2);(3);(4) 二、能力训练 10一个自然数的算术平方根是x,则它后面一个数的算术平方根是( ) Ax+1 Bx2+1 C+1 D 11若2m-4与3m-1是同一个数的平方根,则m的值是( ) A-3 B1 C-3或1 D-1 12已知x,y是实数,且+(y-3)2=0,则xy的值是( ) A4 B-4 C D- 13
3、若一个偶数的立方根比2大,算术平方根比4小,则这个数是_14将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,小铁球的半径是多少厘米?(球的体积公式为V=R3) 三、综合训练 15利用平方根、立方根来解下列方程(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0; (3)x3-2=0; (4)(x+3)3=4平方根第2课时 要点感知1 一般地,如果一个数的平方等于a,那么这个数叫做a的_或_,这就是说,如果x2=a,那么x叫做a的_.预习练习1-1 (2014梅州)4的平方根是_.1-2 36的平方根是_,-4是_的一个平方根.要点感知2 求一个数a的平方根的
4、运算,叫做开平方,平方与开平方互为逆运算.正数有_个平方根,它们_;0的平方根是_;负数_.预习练习2-1 下列各数:0,(-2)2,-22,-(-5)中,没有平方根的是_.2-2 下列各数是否有平方根?若有,求出它的平方根;若没有,请说明为什么? (1)(-3)2; (2)-42; (3)-(a2+1).要点感知3 正数a的算术平方根可以用表示;正数a的负的平方根可以用表示_,正数a的平方根可以用表示_,读作“_”.预习练习3-1 计算:=_,-=_,=_.知识点1 平方根1.(2013资阳)16的平方根是( ) A.4 B.4 C.8 D.82.下面说法中不正确的是( ) A.6是36的平
5、方根 B.-6是36的平方根 C.36的平方根是6 D.36的平方根是63.下列说法正确的是( ) A.任何非负数都有两个平方根 B.一个正数的平方根仍然是正数 C.只有正数才有平方根 D.负数没有平方根4.填表:a2-2a2812255.求下列各数的平方根: (1)100; (2)0.008 1; (3).知识点2 平方根与算术平方根的关系6.下列说法不正确的是( ) A.21的平方根是 B.的平方根是7.若正方形的边长为a,面积为S,则( ) A.S的平方根是a B.a是S的算术平方根 C.a= D.S=8.求下列各数的平方根与算术平方根: (1)(-5)2; (2)0; (3)-2; (
6、4).9.已知25x2-144=0,且x是正数,求2的值.10.下列说法正确的是( ) A.因为3的平方等于9,所以9的平方根为3 B.因为-3的平方等于9,所以9的平方根为-3 C.因为(-3)2中有-3,所以(-3)2没有平方根 D.因为-9是负数,所以-9没有平方根11.|-9|的平方根是( ) A.81 B.3 C.3 D.-312.计算:=_,-=_,=_.13.若8是m的一个平方根,则m的另一个平方根为_.14.求下列各式的值: (1); (2)-; (3).15.求下列各式中的x: (1)9x2-25=0; (2)4(2x-1)2=36.16.全球气候变暖导致一些冰川融化并消失.
7、在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7(t12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年. (1)计算冰川消失16年后苔藓的直径; (2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?17.在物理学中,电流做功的功率P=I2R,试用含P,R的式子表示I,并求当P=25、R=4时,I的值.18.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少? (2)已知a-1和5-2a是m的平方根,求a与m的值.挑战自我19.已知2a-1的平方根是3,3a+
8、b-1的平方根是4,求a+2b的平方根.6.2 立方根要点感知1 一般地,如果一个数的立方等于a,那么这个数叫做a的_,即如果x3=a,那么_叫做_的立方根.预习练习1-1 (2014黄冈)-8的立方根是( ) A.-2 B.2 C.2 D.-1-2 -64的立方根是_,-是_的立方根.要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是_;负数的立方根是_;0的立方根是_.预习练习2-1 下列说法正确的是( ) A.如果一个数的立方根是这个数本身,那么这个数一定是0 B.一个数的立方根不是正数就是负数 C.负数没有立方根 D.一个不为零的数的立方根和这个数同
9、号,0的立方根是0要点感知3 一个数a的立方根可以用表示,读作“_”,其中_是被开方数,_是根指数.预习练习3-1 计算:=_.知识点1 立方根1.(2014潍坊)的立方根是( ) A.-1 B.0 C.1 D.12.若一个数的立方根是-3,则该数为( ) A.- B.-27 C. D.273.下列判断:一个数的立方根有两个,它们互为相反数;若x3=(-2)3,则x=-2;15的立方根是;任何有理数都有立方根,它不是正数就是负数.其中正确的有( ) A.1个 B.2个 C.3个 D.4个4.立方根等于本身的数为_.5.的平方根是_.6.若x-1是125的立方根,则x-7的立方根是_.7.求下列
10、各数的立方根: (1)0.216; (2)0; (3)-2; (4)-5.8.求下列各式的值: (1); (2); (3)-.知识点2 用计算器求立方根9.用计算器计算的值约为( ) B.3.050 C10.估计96的立方根的大小在( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间11.计算:_(精确到百分位).12.已知=1.038,=2.237,=4.820,则=_,=_.13.(1)填表:a0.000 0010.00111 0001 000 000 (2)由上表你发现了什么规律?请用语言叙述这个规律:_. (3)根据你发现的规律填空:已知=1.442,则=_,=_;已
11、知=0.076 96,则=_.14.下列说法正确的是( ) A.一个数的立方根有两个,它们互为相反数 B.一个数的立方根比这个数平方根小 C.如果一个数有立方根,那么它一定有平方根 D.与互为相反数15.计算的正确结果是( ) A.7 B.-7 C.7 D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( ) A.2倍 B.3倍 C.4倍 D.5倍17.-27的立方根与的平方根之和是_.18.计算:-=_,=_.19.已知2x+1的平方根是5,则5x+4的立方根是_.20.求下列各式的值: (1); (2)-; (3)-+; (4)-+.21.比较下列
12、各数的大小: (1)与; (2)-与-3.4.22.求下列各式中的x: (1)8x3+125=0; (2)(x+3)3+27=0.23.若与(b-27)2互为相反数,求-的立方根.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版七 年级 下册 实数 课时 练习题 15
限制150内