直角三角形的性质和判定教学设计(4页).doc
《直角三角形的性质和判定教学设计(4页).doc》由会员分享,可在线阅读,更多相关《直角三角形的性质和判定教学设计(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-直角三角形的性质和判定教学设计-第 4 页直角三角形的性质和判定教学设计直角三角形的性质和判定(第1课时)教学目标1、掌握“直角三角形的两个锐角互余”定理。2、巩固利用添辅助线证明有关几何问题的方法。教学重点直角三角形斜边上的中线性质定理的应用。教学难点直角三角形斜边上的中线性质定理的证明思想方法。教学方法观察、比较、合作、交流、探索.教学过程一、复习引入1、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、合作探究(一)直角三角形性质定理1请学生看图形:1、提问:A与B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐
2、角互余。3、巩固练习:练习1(1)在直角三角形中,有一个锐角为52,那么另一个锐角度数(2)在Rt△ABC中,C=90,A -B =30,那么A=,B=。练习2如图,在△ABC中,ACB=90,CD是斜边AB上的高,那么,(1)与B互余的角有(2)与A相等的角有。(3)与B相等的角有。(二)直角三角形性质定理21、实验操作: 要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?2、归纳直角三角形性质定理: 直角三角形斜边上的中线等于斜边的一半三、巩固与提高(一)讲解P87例1(二)课堂练习1、在△ABC中,ACB=90,CE是AB边上的中线,那么与CE相等的线段有_,与A相等的角有_,若A=35,那么ECB= _。2、已知:ABC=ADC=90,E是AC中点。求证:(1)ED=EB(2)EBD=EDB (3)图中有哪些等腰三角形?(三)小结:这节课主要讲了直角三角形的那两条性质定理?(四)布置作业P93 第1、2题课后反思:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形 性质 判定 教学 设计
限制150内