直线与圆的方程测试卷(含答案)(9页).doc
《直线与圆的方程测试卷(含答案)(9页).doc》由会员分享,可在线阅读,更多相关《直线与圆的方程测试卷(含答案)(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-直线与圆的方程测试卷(含答案)-第 9 页直线和圆的方程(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.若直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a的值为( ) 或1 或0 或02.集合M=(x,y)|y=,x、yR,N=(x,y)|x=1,yR,则MN等于( )A.(1,0) B.y|0y1C.1,0 D.解析:y=表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0).答案:A3.菱形ABCD的相对顶点为A(1,-2),C(-2,-3),则对角线BD所在直线的方程是 ( )A.3x+y+4=0 B.3x+y-4=0C.
2、3x-y+1=0 D.3x-y-1=0解析:由菱形的几何性质,知直线BD为线段AC的垂直平分线,AC中点O在BD上,故,代入点斜式即得所求.答案:A4.若直线经过点M(cos,sin),则 ( )2+b21 2+b21C. D.解析:直线经过点M(cos,sin),我们知道点M在单位圆上,此问题可转化为直线和圆x2+y2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式,有 答案:D5.当圆x2+y2+2x+ky+k2=0的面积最大时,圆心坐标是( )A.(0,-1) B.(-1,0) C.(1,-1) D.(-1,1)解析:r2=,当k=0时,r2最大,从而圆的面积最大.此时圆心坐标为
3、(-1,0),故选B.答案:B6.过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为( )A.30 B.45 C.60 D.90解析:由已知,得圆心为C(5,1),半径为,设过点P作的两条切线的切点分别为M,N,当CP垂直于直线y=x时,l1,l2关于y=x对称,|CP|为圆心到直线y=x的距离,即|CP|=,|CM|=,故CPM=30,NPM=60.答案:C7.在如图所示的坐标平面的可行域(阴影部分且包括边界)内,若是目标函数z=ax+y(a0)取得最大值的最优解有无数个,则a的值等于( )A. 解析:将z=ax+y
4、化为斜截式y=-ax+z(a0),则当直线在y轴上截距最大时,z最大.最优解有无数个,当直线与AC重合时符合题意.又kAC=-1,-a=-1,a=1.答案:B8.已知直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是( )A.(0,1) B. C.(,1)(1,) D.(1,)解析:结合图象,如右图,其中=45-15=30,=45+15=60.需a(tan30,1)(1,tan60),即a(,1)(1,).答案:C9.把直线x-2y+=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x2+y2+2x-4y=0相切,则实数的值为(
5、)或13 或13 或-13 或-13解析:直线x-2y+=0按a=(-1,-2)平移后的直线为x-2y+-3=0,与圆相切,则圆心(-1,2)到直线的距离,求得=13或3.答案:A10.如果直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组表示的平面区域的面积是( )A. B. 解析:由题中条件知k=1,m=-1,易知区域面积为.答案:A11.两圆与的位置关系是( )A.内切 B.外切 C.相离 D.内含解析:两圆化为标准式为(x+3)2+(y-4)2=4和x2+y2=9,圆心C1(-3,4),C2(0,0).两圆圆心距|C1C2|=5
6、=2+3.两圆外切.答案:B12.方程=k(x-3)+4有两个不同的解时,实数k的取值范围是( )A. B.(,+) C.() D. 解析:设y=,其图形为半圆;直线y=k(x-3)+4过定点(3,4),由数形结合可知,当直线y=k(x-3)+4与半圆y=有两个交点时,.选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.若x,y满足约束条件则z=2x-y的最大值为_.解析:作出可行域如图所示.当直线z=2x-y过顶点B时,z达到最大,代入得z=9.答案:914.在y轴上截距为1,且与直线2x-3y-7=0的夹角为的直线方程是_.解析:由题意知斜率存在,设其为k,则直线方程为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 方程 测试 答案
限制150内