《离散数学课后习题答案(左孝凌版)(56页).doc》由会员分享,可在线阅读,更多相关《离散数学课后习题答案(左孝凌版)(56页).doc(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-离散数学课后习题答案(左孝凌版)-第 55 页离散数学课后习题答案 (左孝凌版)1-1,1-2解:a) 是命题,真值为T。b) 不是命题。c) 是命题,真值要根据具体情况确定。d) 不是命题。e) 是命题,真值为T。f) 是命题,真值为T。g) 是命题,真值为F。h) 不是命题。i) 不是命题。(2) 解:原子命题:我爱北京天安门。复合命题:如果不是练健美操,我就出外旅游拉。(3) 解:a) (P R)Q b) QRc) P d) PQ(4) 解:a)设Q:我将去参加舞会。R:我有时间。P:天下雨。Q (RP):我将去参加舞会当且仅当我有时间和天不下雨。b)设R:我在看电视。Q:我在吃苹果。
2、RQ:我在看电视边吃苹果。c) 设Q:一个数是奇数。R:一个数不能被2除。(QR)(RQ):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。(5) 解:a) 设P:王强身体很好。Q:王强成绩很好。PQ b) 设P:小李看书。Q:小李听音乐。PQc) 设P:气候很好。Q:气候很热。PQd) 设P: a和b是偶数。Q:a+b是偶数。PQe) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。PQf) 设P:语法错误。Q:程序错误。R:停机。(P Q) R(6) 解:a) P:天气炎热。Q:正在下雨。 PQb) P:天气炎热。R:湿度较低。 PRc) R:天正在下雨
3、。S:湿度很高。 RSd) A:刘英上山。B:李进上山。 ABe) M:老王是革新者。N:小李是革新者。 MNf) L:你看电影。M:我看电影。 LMg) P:我不看电视。Q:我不外出。 R:我在睡觉。 PQRh) P:控制台打字机作输入设备。Q:控制台打字机作输出设备。PQ1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。 (2)解: a) A是合式公式,(AB)是合式公式,(A(AB) 是合式公式。这个过程可以简记为:A;(AB);(A(AB
4、) 同理可记b) A;A ;(AB) ;(AB)A)c) A;A ;B;(AB) ;(BA) ;(AB)(BA)d) A;B;(AB) ;(BA) ;(AB)(BA)(3)解:a) (AC)(BC)A)(BC)A)(AC)b) (BA)(AB)。(4)解: a) 是由c) 式进行代换得到,在c) 中用Q代换P, (PP)代换Q. d) 是由a) 式进行代换得到,在a) 中用 P(QP)代换Q. e) 是由b) 式进行代换得到,用R代换P, S代换Q, Q代换R, P代换S.(5)解:a) P: 你没有给我写信。 R: 信在途中丢失了。 P Qb) P: 张三不去。Q: 李四不去。R: 他就去。
5、 (PQ)Rc) P: 我们能划船。 Q: 我们能跑步。 (PQ)d) P: 你来了。Q: 他唱歌。R: 你伴奏。 P(QR)(6)解:P:它占据空间。 Q:它有质量。 R:它不断变化。 S:它是物质。这个人起初主张:(PQR) S后来主张:(PQS)(SR)这个人开头主张与后来主张的不同点在于:后来认为有PQ必同时有R,开头时没有这样的主张。(7)解:a) P: 上午下雨。 Q:我去看电影。 R:我在家里读书。 S:我在家里看报。(PQ)(P(RS)b) P: 我今天进城。Q:天下雨。QPc) P: 你走了。 Q:我留下。QP1-4 (4)解:a) P Q RQRP(QR)PQ(PQ)RT
6、T TT T FT F TT F FF T TF T FF F TF F FTFFFTFFFTFFFFFFFTTFFFFFFTFFFFFFF所以,P(QR) (PQ)Rb) P Q R QR P(QR) PQ (PQ)R T T T T T F T F T T F F F T T F T F F F T F F F所以,P(QR) (PQ)R)()()()所以,P(QR) (PQ)(PR))P QPQPQ(PQ)PQ(PQ)T TT FF TF FFFTTFTFTFTTTFTTTFFFTFFFT所以,(PQ) PQ, (PQ) PQ(5)解:如表,对问好所填的地方,可得公式F1F6,可表达为
7、P Q R F1 F2 F3 F4 F5 F6 T T T T F T T F F T T F F F T F F F T F T T F F T T F T F F F T F T T F F T T T F F T T F F T F T F F F T F F F T T F T T T F F F F F T F T T TF1:(QP)RF2:(PQR)(PQR)F3:(PQ)(QR)F4:(PQR)(PQR)F5:(PQR)(PQR)F6:(PQR)(6)PQ1 234 5678910111213141516FF FTF TFTFTFTFTFTFTFTFFTTFFTTFFTT FF
8、TTTFFFFFTTTTFFFFTTTTTTFFFFFFFFTTTTTTTT解:由上表可得有关公式为1.F 2.(PQ) 3.(QP) 4.P 5.(PQ) 6.Q 7.(PQ) 8.(PQ) 9.PQ 10.PQ 11.Q 12.PQ 13.P 14.QP 15.PQ 16.T(7) 证明:a) A(BA) A(BA) A(AB) A(AB) A(AB)b) (AB) (AB)(AB) (AB)(AB)(AB)(AB) 或 (AB) (AB)(BA)(AB)(BA)(AB)(AA)(BB)(BA)(AB)(BA)(AB)(AB) (AB)(AB)c) (AB) (AB) ABd) (AB)(
9、AB)(BA)(AB)(BA)(AB)(AB)e) (ABC)D)(C(ABD) (ABC)D)(C(ABD) (ABC)D)(ABC)D) (ABC)(ABC)D (ABC)(ABC)D (AB)(AB)C)D (C(AB)D)f) A(BC) A(BC) (AB)C(AB)C (AB)Cg) (AD)(BD)(AD)(BD) (AB)D (AB)D (AB)Dh) (AB)C)(B(DC) (AB)C)(B(DC) (AB)(BD)C(AB) (DB)C(AB)(DB)C (AD)B)C (B(DA)C(8)解:a) (AB) (BA)C (AB) (BA)C (AB) (AB)CTCCb
10、) A(A(BB) (AA)(BB) TF Tc) (ABC)(ABC) (AA) (BC)T(BC)BC(9)解:1)设C为T,A为T,B为F,则满足ACBC,但AB不成立。 2)设C为F,A为T,B为F,则满足ACBC,但AB不成立。 3)由题意知A和B的真值相同,所以A和B的真值也相同。习题 1-5(1) 证明:a) (P(PQ)Q(P(PQ)Q(PP)(PQ)Q(PQ)Q(PQ)QPQQPTTb) P(PQ)P(PQ) (PP)QTQTc) (PQ)(QR)(PR)因为(PQ)(QR)(PR)所以(PQ)(QR)为重言式。d) (ab)(bc) (ca)(ab)(bc)(ca)因为(a
11、b)(bc)(ca)(ac)b)(ca)(ac)(ca)(b(ca)(ac)(bc)(ba)所以(ab)(bc) (ca)(ab)(bc)(ca) 为重言式。(2) 证明:a)(PQ)P(PQ)解法1:设PQ为T(1)若P为T,则Q为T,所以PQ为T,故P(PQ)为T(2)若P为F,则Q为F,所以PQ为F,P(PQ)为T命题得证解法2:设P(PQ)为F,则P为T,(PQ)为F,故必有P为T,Q为F,所以PQ为F。解法3:(PQ) (P(PQ)(PQ)(P(PQ)(PQ)(PP)(PQ)T所以(PQ)P(PQ)b)(PQ)QPQ设PQ为F,则P为F,且Q为F,故PQ为T,(PQ)Q为F,所以(P
12、Q)QPQ。c)(Q(PP)(R(R(PP)RQ设RQ为F,则R为T,且Q为F,又PP为F所以Q(PP)为T,R(PP)为F所以R(R(PP)为F,所以(Q(PP)(R(R(PP)为F即(Q(PP)(R(R(PP)RQ成立。(3) 解:a) PQ表示命题“如果8是偶数,那么糖果是甜的”。b) a)的逆换式QP表示命题“如果糖果是甜的,那么8是偶数”。c) a)的反换式PQ表示命题“如果8不是偶数,那么糖果不是甜的”。d) a)的逆反式QP表示命题“如果糖果不是甜的,那么8不是偶数”。(4) 解:a) 如果天下雨,我不去。设P:天下雨。Q:我不去。PQ 逆换式QP表示命题:如果我不去,则天下雨。
13、逆反式QP表示命题:如果我去,则天不下雨b) 仅当你走我将留下。设S:你走了。R:我将留下。RS逆换式SR表示命题:如果你走了则我将留下。逆反式SR表示命题:如果你不走,则我不留下。c) 如果我不能获得更多帮助,我不能完成个任务。设E:我不能获得更多帮助。H:我不能完成这个任务。EH逆换式HE表示命题:我不能完成这个任务,则我不能获得更多帮助。逆反式HE表示命题:我完成这个任务,则我能获得更多帮助(5) 试证明PQ,Q逻辑蕴含P。证明:解法1:本题要求证明(PQ) QP, 设(PQ) Q为T,则(PQ)为T,Q为T,故由的定义,必有P为T。所以(PQ) QP解法2:由体题可知,即证(PQ)Q)
14、P是永真式。 (PQ)Q)P (PQ) (PQ) Q)P (PQ) (PQ) Q) P (PQ) (PQ) Q) P (QPQ) (QPQ) P (QP) T) PQPPQT T(6) 解:P:我学习 Q:我数学不及格 R:我热衷于玩扑克。如果我学习,那么我数学不会不及格: PQ如果我不热衷于玩扑克,那么我将学习: RP 但我数学不及格: Q因此我热衷于玩扑克。 R即本题符号化为:(PQ)(RP)QR证:证法1:(PQ)(RP)Q)R (PQ)(RP)Q) R (PQ)(RP)QR (QP)(QQ)(RR)(RP) QPRP T所以,论证有效。证法2:设(PQ)(RP)Q为T,则因Q为T,(P
15、Q) 为T,可得P为F,由(RP)为T,得到R为T。故本题论证有效。(7) 解:P:6是偶数 Q:7被2除尽 R:5是素数如果6是偶数,则7被2除不尽 PQ或5不是素数,或7被2除尽 RQ5是素数 R所以6是奇数 P即本题符号化为:(PQ)(RQ)R P证:证法1:(PQ)(RQ)R)P (PQ) (RQ) R) P (PQ) (RQ) R) P (PP) (PQ) (RR) (RQ) (PQ) (RQ)T所以,论证有效,但实际上他不符合实际意义。证法2:(PQ)(RQ)R为T,则有R为T,且RQ 为T,故Q为T,再由PQ为T,得到P为T。(8) 证明:a) P(PQ)设P为T,则P为F,故P
16、Q为Tb) ABCC假定ABC为T,则C为T。c) CABB因为ABB为永真,所以CABB成立。d) (AB) AB 设(AB)为T,则AB为F。若A为T,B为F,则A为F,B为T,故AB为T。若A为F,B为T,则A为T,B为F,故AB为T。若A为F,B为F,则A为T,B为T,故AB为T。命题得证。e) A(BC),DE,(DE)ABC设A(BC),DE,(DE)A为T,则DE为T,(DE)A为T,所以A为T又A(BC)为T,所以BC为T。命题得证。f) (AB)C,D,CDAB设(AB)C,D,CD为T,则D为T,CD为T,所以C为F又(AB)C为T,所以AB为F,所以AB为T。命题得证。(
17、9)解:a) 如果他有勇气,他将得胜。P:他有勇气 Q:他将得胜 原命题:PQ 逆反式:QP 表示:如果他失败了,说明他没勇气。b) 仅当他不累他将得胜。P:他不累 Q:他得胜 原命题:QP 逆反式:PQ 表示:如果他累,他将失败。习题 1-6(1)解:a) (PQ)P(PP)Q(TQ)b) (P(QR) PQ (P(QR)PQ(PPQ)(QPQ)(RPQ)(PQ)(PQ)(PRQ)PQ(PQ)c) PQ(RP)PQ(RP) (PQR)(PQP)(PQR)FPQR(PQR)(2) 解:a)P PPb)PQ(PQ) (PQ)(PQ)c)PQPQ (PP)(QQ)(3)解:P(PQ)P(PQ)TP
18、P (PP)(PP)P(PP) P(PQ)P(PQ)TPP(PP)(PP)P)(PP)P)(PP)P)(4)解:PQ(PQ)(PP)(QQ) (PP)(QQ)(PP)(QQ)(5)证明:(BC)(BC) BC(BC)(BC)BC(6)解:联结词“”和“”不满足结合律。举例如下:a)给出一组指派:P为T,Q为F,R为F,则(PQ)R为T,P(QR)为F故 (PQ)R P(QR).b)给出一组指派:P为T,Q为F,R为F,则(PQ) R为T,P(QR)为F故(PQ)R P(QR).(7)证明:设变元P,Q,用连结词,作用于P,Q得到:P,Q,P,Q,PQ,PP,QQ,QP。但PQQP,PPQQ,故
19、实际有:P,Q,P,Q,PQ,PP(T) (A)用作用于(A)类,得到扩大的公式类(包括原公式类):P,Q,P,Q,(PQ), T,F, PQ (B)用作用于(A)类,得到:PQ,PPF,PQ(PQ),P(PQ)Q,P(PP)P,QP(PQ),QQF,Q(PQ)P,QTQ, PQPQ,P(PQ)Q,PTP, Q(PQ)P,QTQ,(PQ)(PQ)PQ.因此,(A)类使用运算后,仍在(B)类中。对(B)类使用运算得:P,Q,P,Q, PQ, F,T,(PQ), 仍在(B)类中。对(B)类使用运算得:PQ,PPF,PQ(PQ),P(PQ)Q,PTP,PFP,P(PQ)Q, QP(PQ),QQF,Q
20、(PQ)P,QTQ, QFQ, Q(PQ)P, PQPQ,P(PQ)Q,PTP, PFP,P(PQ)Q, Q(PQ)P,QTQ, QTQ,Q(PQ)P,(PQ)T(PQ),(PQ)FPQ,(PQ)(PQ)FTFF,T(PQ) PQF(PQ) (PQ)(PQ)(PQ)PQ.故由(B)类使用运算后,结果仍在(B)中。由上证明:用,两个连结词,反复作用在两个变元的公式中,结果只能产生(B)类中的公式,总共仅八个不同的公式,故,不是功能完备的,更不能是最小联结词组。已证,不是最小联结词组,又因为P Q (PQ),故任何命题公式中的联结词,如仅用 , 表达,则必可用,表达,其逆亦真。故 , 也必不是最小
21、联结词组。(8)证明,和不是最小联结词组。证明:若,和是最小联结词,则 P(PP) P(PP) PP(P(P)对所有命题变元指派T,则等价式左边为F,右边为T,与等价表达式矛盾。c所以,和不是最小联结词。(9)证明,和, 是最小联结词组。证明:因为,为最小联结词组,且PQPQ所以,是功能完备的联结词组,又,都不是功能完备的联结词组。ccc所以,是最小联结词组。c又因为PQ(P Q),所以, 是功能完备的联结词组,又, 不是功能完备的联结词组,所以, 是最小联结词组。习题 1-7(1)解:P(PQ)P(PQ) (PP)(PQ)P(PQ) (P(QQ)(PQ) (PQ)(PQ)(PQ)(2)解:a
22、) (PQ)R(PQ)R PQR(PQ)(PQ)(QR)(QR)(RP)(RP)b) P(QR)S)P(QR)S)PQRS(PQ)(PQ)(QR)(QR)(RS)(RS)(SP)(SP)c) (PQ)(ST)(PQ)(ST)(PQS)(PQT)d) (PQ)R(PQ)R(PQ)R(PR)(QR)e) (PQ)(PQ)(PQ)(PQ)(PP)(PQ)(QP)(QQ) (PQ)(QP)(3) 解:a) P(PQR)(PP)(PQ)(PR)(PQ)(PR)b) (PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PPQ)(QPQ)c) (PQ)(PQ) PQ(PQ)(PQ)(QP)d) (PQ)R(P
23、Q)R (PQ)R (PR)(QR)e) (PQ)(PQ)(PP)(PQ)(QP)(QQ)(PQ)(QP)(4) 解:a) (PQ)(PQ)(PQ) (PQ) (PQ) (PQ)(PQ) 1,2,3PQ=P0b) Q(PQ) (PQ)(QQ) PQ =3P0,1,2 (PQ)(PQ) (PQ)c) P(P(Q(QR)P(P(Q(QR) PQR=P01,2,3,4,5,6,7=(PQR) (PQR) (PQR) (PQR) (PQR) (PQR)(PQR)d) (P(QR) )(P(QR) (P(QR) (P(QR) (PP) (P(QR) (QR) P) (QR) (QR) (PQR) (PQ
24、R) =0,7P1,2,3,4,5,6 (PQR) (PQR) (PQR) (PQR) (PQR) (PQR)e) P(P(QP) P(P(QP)(PP)(PQP) T(TQ) T0,1,2,3= (PQ) (PQ) (PQ) (PQ)f) (QP) (PQ) (QP) PQ (QP) (PQ) FP0,1,2,3= (PQ) (PQ) (PQ) (PQ)(5) 证明:(AB) (AC) (AB) (AC)A(BC) A(BC) (AB) (AC)(AB) (AB)(AB) (AB) (AB) (AB)A(BB)ATA(AB) (BA) (AB) (BA)A(BB) AFAc)AB(AB) (
25、AA)(AB)B ABB FAB(AB) (AA)(AB)BABBFd)A(A(AB)AA(AB)TAB(AB)(AB) (AB)T (6)解:AR(Q(RP),则A* R(Q(RP)AR(Q(RP)(R(Q(RP) RQ(RP)(RQ) (RP)A*R(Q(RP)(R(Q(RP) RQ(RP)(RQ) (RP)(7) 解:设A:A去出差。B:B去出差。C:C去出差。D:D去出差。若A去则C和D中要去一个。 A(CD)B和C不能都去。 (BC)C去则D要留下。 CD按题意应有:A(CD),(BC),CD必须同时成立。因为CD (CD) (DC)故(A(CD)(BC) (CD) (A(CD) (
26、DC) (BC) (CD) (A(CD) (DC) (BC) (CD) (A(CD) (DC) (BC) (BD) (CD) C) (ABC) (ABD) (ACD) (AC) (BCD) (CDBD) (CDCD) (CDC) (DCBC) (DCBD) (DCCD) (DCC)在上述的析取范式中,有些(画线的)不符合题意,舍弃,得(AC) (BCD) (CD)(DCB)故分派的方法为:BD,或 DA,或 CA。(8)解:设P:A是第一。Q:B是第二。R:C是第二。S:D是第四。E:A是第二。 由题意得 (PQ) (RS) (ES) (PQ) (PQ) (RS) (RS) (ES) (ES)
27、 (PQRS) (PQRS) (PQRS) (PQRS)(ES)(ES) 因为 (PQRS)与(PQRS)不合题意,所以原式可化为(PQRS) (PQRS)(ES) (ES) (PQRSES) (PQRSES) (PQRSES)(PQRSES) (PQRSE) (PQRSE)因R与E矛盾,故PQRSE为真,即A不是第一,B是第二,C不是第二,D为第四,A不是第二。于是得: A是第三 B是第二 C是第一 D是第四。习题1-8(1)证明:a)(PQ),QR,RP(1) RP(2) QR P(3) Q (1)(2)T,I(4) (PQ) P(5) PQ (4)T,E(6) P (3)(5)T,Ib)
28、J(MN),(HG)J,HGMN(1) (HG) J P(2) (HG) P(3) J (1)(2)T,I(4) J(MN) P(5) MN (3)(4)T,Ic)BC,(BC)(HG) GH(1) BC P (2) B(1)T,I(3) C (1)T,I(4) BC(2)T,I(5) CB (3)T,I(6) CB(4)T,E(7) BC (5)T,E(8) BC (6)(7)T,E(9) (BC) (HG) P(10) HG(8)(9)T,Id)PQ,(QR)R,(PS) S(1) (QR) R (2) QR (1)T,I(3) R (1)T,I(4) Q (2)(3)T,I(5) PQ
29、P(6) P (4)(5)T,I(7) (PS) P(8) PS (7)T,E(9) S (6)(8)T,I(2) 证明:a)AB,CBAC(1) (AC) P (2) A (1)T,I(3) C (1)T,I(4) AB P(5) B (2)(4)T,I(6) CB P(7) B (3)(6)T,I(8) BB 矛盾。(5),(7)b)A(BC),(CD)E,F(DE) A(BF)(1) (A(BF) P(2) A (1)T,I(3) (BF) (1)T,I(4) B (3)T,I(5) F (3)T,(6) A(BC) P(7) BC (2)(6)T,I(8) C (4)(7)T,I(9)
30、 F(DE) P (10) DE (5)(9)T,I(11) D (10)T,I(12) CD (8)(11)T,I (13) (CD) E P(14) E (12)(13)T,I(15) E (10)T,I(16) EE 矛盾。(14),(15)c)ABCD,DEFAF(1) (AF) P(2) A (1)T,I(3) F (1)T,I(4) AB (2)T,I(5) (AB) CD P(6) CD (4)(5)T,I(7) C (6)T,I(8) D (6)T,I(9) DE (8)T,I(10) DEF P(11) F(9)(10)T,I(12) FF矛盾。(3),(11)d)A(BC)
31、,BD,(EF)D,B(AE) BE(1) (BE) P(2) B (1)T,I(3) E (1)T,I(4) BD P(5) D (2)(4)T,I(6) (EF) D P (7) (EF) (5)(6)T,I(8) E (7)T,I(9) EE 矛盾e)(AB)(CD),(BE)(DF),(EF),ACA(1) (AB) (CD) P(2) AB (1)T,I(3) (BE) (DF) P(4) BE (3)T,I(5) AE (2)(4)T,I(6) (EF) P(7) EF (6)T,E(8) EF (7)T,E(9) AF (5)(8)T,I(10) CD (1)T,I(11) DF (3)T,I(12) CF (10)(10)T,I(13) AC P(14) AF (13)(12)T,I(15) FA (14)T,E(16) AA (9)(15)T,I(17) AA (16)T,E(18) A (17) T,E(3) 证明:a)AB,CBAC(1) A P(2) AB P(3) B (1)(2)T,I(4) CB P(5) C (3)(4)T,I(6) AC CPb)A(BC),(CD)E,F(DE) A(BF)(1) A P(2) A(BC) P(3) BC (1
限制150内