构造函数解导数综合题(10页).doc





《构造函数解导数综合题(10页).doc》由会员分享,可在线阅读,更多相关《构造函数解导数综合题(10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-构造函数解导数综合题-第 10 页构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧技法一:“比较法”构造函数典例(2017广州模拟)已知函数f(x)exax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为1(1)求a的值及函数f(x)的极值;(2)证明:当x0时,x2ex解(1)由f(x)exax,得f(x)exa因为f(0)1a1,
2、所以a2,所以f(x)ex2x,f(x)ex2,令f(x)0,得xln 2,当xln 2时,f(x)0,f(x)单调递减;当xln 2时,f(x)0,f(x)单调递增所以当xln 2时,f(x)取得极小值,且极小值为f(ln 2)eln 22ln 22ln 4,f(x)无极大值(2)证明:令g(x)exx2,则g(x)ex2x由(1)得g(x)f(x)f(ln 2)0,故g(x)在R上单调递增所以当x0时,g(x)g(0)10,即x2ex方法点拨在本例第(2)问中,发现“x2,ex”具有基本初等函数的基因,故可选择对要证明的“x2ex”构造函数,得到“g(x)exx2”,并利用(1)的结论求解
3、对点演练已知函数f(x),直线yg(x)为函数f(x)的图象在xx0(x01)处的切线,求证:f(x)g(x)证明:函数f(x)的图象在xx0处的切线方程为yg(x)f(x0)(xx0)f(x0)令h(x)f(x)g(x)f(x)f(x0)(xx0)f(x0),则h(x)f(x)f(x0)设(x)(1x)e(1x0)ex,则(x)e(1x0)ex,x01,(x)0,(x)在R上单调递减,又(x0)0,当xx0时,(x)0,当xx0时,(x)0,当xx0时,h(x)0,当xx0时,h(x)0,h(x)在区间(,x0)上为增函数,在区间(x0,)上为减函数,h(x)h(x0)0,f(x)g(x)技
4、法二:“拆分法”构造函数典例设函数f(x)aexln x,曲线yf(x)在点(1,f(1)处的切线为ye(x1)2(1)求a,b;(2)证明:f(x)1解(1)f(x)aex(x0),由于直线ye(x1)2的斜率为e,图象过点(1,2),所以即解得(2)证明:由(1)知f(x)exln x(x0),从而f(x)1等价于xln xxex构造函数g(x)xln x,则g(x)1ln x,所以当x时,g(x)0,当x时,g(x)0,故g(x)在上单调递减,在上单调递增,从而g(x)在(0,)上的最小值为g构造函数h(x)xex,则h(x)ex(1x)所以当x(0,1)时,h(x)0;当x(1,)时,
5、h(x)0;故h(x)在(0,1)上单调递增,在(1,)上单调递减,从而h(x)在(0,)上的最大值为h(1)综上,当x0时,g(x)h(x),即f(x)1方法点拨对于第(2)问“aexln x1”的证明,若直接构造函数h(x)aexln x1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“aexln x1”合理拆分为“xln xxex”,再分别对左右两边构造函数,进而达到证明原不等式的目的对点演练已知函数f(x),曲线yf(x)在点(1,f(1)处的切线方程为x2y30(1)求a,b的值;(2)证明:当x0,且x1时,f(x)解:(1)f(x)(x0)由于直线x2y30的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 构造 函数 导数 综合 10

限制150内