反证法在中学数学中的应用(11页).docx
《反证法在中学数学中的应用(11页).docx》由会员分享,可在线阅读,更多相关《反证法在中学数学中的应用(11页).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-123 反证法在中学数学中的应用-第 11 页4 引言有一个故事讲的是奸臣弹劾贤能的大臣,最后贤能的大臣被陷害要被皇上处死,可是皇上觉得这位大臣罪不该死,就把生死两个字分别写在两张纸条上,让这个大臣自己选择其中一张纸条,是生便生,是死便死。但是,奸臣却在纸条上做了手脚,让他抽出的任何一张纸条上面写的都是死字。这个阴谋被贤能之臣的好友发现了,并且告知了他,想要和他一起在皇上面前告发奸臣的诡计。但是这个快要被处死的大臣却没让好友这么做,而是很高兴的告诉好友:“不要有任何举动,当我拿到纸条以后,就快速吃进嘴里,那么监斩官就不得不看剩下的那张纸条了,这样监斩官可以推断出我吃进去的纸条上面写的是生字,
2、那么我不就得救了1”。通过这个故事,我们能够看出这个即将走上死路的大臣是通过什么方法挽救了自己的生命,贤臣是利用了“生相对于死”的反证法,这样就轻松解决了自己被杀掉的危机。 哈代是一位非常优秀的英国数学家,他说出过这样的言论:“反证法对于数学家来说,就是最强有力的一件武器,比起象棋开局让子以取得优势的方法还要高明很多,象棋对弈最多牺牲一子,而数学家在运用反证法的时候索性全盘否定,拱手相让,最终却取得了胜利Error! Reference source not found.。这些体现了反证法的神奇之处和不可动摇的地位。反证法是如此神奇,反证法即可以应用到生活当中去解决危机,又可以解决数学中的难题
3、。本文就是具体分析反证法在数学中是如何应用的,希望能为大家学习和运用反证法提供帮助。5 反证法的介绍5.1 反证法的概念要证明一个命题成立,有时候不容易直接证明,就可以考虑从反向思考证明。那么先提出与求证的结论相反的假设,然后推导出和已知证明的定理或公理、定义、原题设相矛盾的结果,这样就证明了跟求证的结论相反的假设是不能成立,从而肯定了原来求证的结论是成立的,这种间接证明的方法叫反证法3。5.2 反证法的证明步骤大概能够把运用反证法证明命题的方式分为以下三步:(1)反设假设命题的结论的反面是成立的。(2)归谬通过假设的结论去证明,从而推出一些相矛盾的结论。(3)结论说明要证明命题的结论的反面是
4、不能成立的,那就证明了命题的结论是成立的。5.3 反证法的逻辑依据在逻辑思想学中有两个规律一个是“矛盾律”另一个就是“排中律”,这两个规律为反证法提供了思想理论依据4。“矛盾律”就是在同样的一个思维方式情况下,两个相反的或者是有矛盾点的定义或者结论之间都是真的情况是不可能的,至少有一个是假的5;“排中律”就是结论与相反的结论,在这两个结论之间是不能够出现都是假的情况的,必定有一个是真的6。运用反证法的时候,根据矛盾律在两个相反的结论当中,一定不能够出现这两个结论都是真的情况,在原来已经知道或者已经证明推导出的真的结论的基础上,那么假设的结论,也就是相反的结论,就必定是假的7。依照排中律中的规律
5、,得出其中的这两个结论都是假的情况也是不可能出现的,那么结论真假的情况就一定是一个真一个假,通过最终证明,最后的假设一定是假的,那么就可以推导出原有的结论就一定不能假,必定是真。所以,有了逻辑思维的理论基础作为反证法的依据,反证法就是可信的。 反证法就是通过矛盾律证明与命题相矛盾的命题是假的,即根据排中律确定命题是真的证明方法,是一种间接证明方法。其证明过程如下:要证明命题p。第一步:假设反命题非p。第二步:证明“非p”虚假(依据矛盾律)。第三步:所以命题p为真(依据排中律)。5.4 反证法的分类目前根据我所了解到关于反证法的分类,主要是按照了反设方面出现的不同类型可以分为两类,一类就是归谬反
6、证法,另一类就是穷举反证法8。5.4.1 归谬反证法如果结论的反面只有一种类型,则反设就只有一种,那么要做的就是证明这个反设是错误的,从而可以证明出结论正确。这个证明方法就是反证法分类的第一类归谬反证法8。例1 已知是整数,同时为偶数,求证;是偶数。分析:如果想要直接就用什么方法进行证明,可能没有任何想法,虽然题中给的条件很简单,很明了,我们也能够很清楚的读明白题意,但是正面解题没有什么关键点,这时候就需要换个角度对此题进行证明,如果我们从反面进行思考,在题中给的条件中进行反面分析,偶数相对的就只有奇数这一种情况,这样就有了比较清晰的思路,这道题反面分析,就是可以证明在是奇数的情况下,而不是偶
7、数,这样达到了证明的目的。证明:假设是一个奇数。那么也就是偶数,就可以得出结果也是一个偶数,最后得出是一个奇数,结论和题目中是偶数产生了矛盾点。假设不成立,即是偶数。5.4.2 穷举反证法若是出现了结论的反面不只是一种,那么就要把反面的类型一一列举出来,分情况去证明它们都是错误的,这样就可以达到证明原来结论是正确的,这个证明方法就是反证法分类的第二类穷举反证法8。穷举法就是要把可能的情况都列举出来,带入实际,一个个的去检验是否符合。计算机经常采用种穷举法进行工作,由于计算机的高速运转,工作过程耗时很短,所以得到结论的时间就很短,想要知道结论是真是假,就不用耗费那么长时间。穷举法能够看成是一个最
8、简单的搜索:就是在一个集合中包含了所有的可能的状况元素,对这些元素都一一进行的排查,目的是查看其元素的可行性是不是存在13。例2 设都是整数,且能被整除,求证:和都能被整除Error! Reference source not found.。分析:从题中可以看出结论是和都能被整除,那么需要假设出它的反面,和不都能被整除,那就不只是一种情况,而分多种情况,就需要把它的反面都列举出来,分情况去证明。证明:假设和不都能被整除,那么有三种情形:(1);(2);(3)。(1)如果。可设,则所以,与已知条件能被整除相矛盾。(2)如果。同理可证这个假设也是错误的。(3)如果。则可设,这样又有四种可能的情形:
9、对于情形,有这就表明,与已知条件相矛盾。同理可证,三种情形也是不能成立的。综上所述,假设和不都能被整除是不成立的,由此原题得证。6 反证法的推理方法6.1 为什么使用反证法证明题如果从正向思考证明可以得出结论,我们就不用反向考虑,但正向思维比较难以得出结论时,我们就需要考虑用反证法去证明,会比较容易得出所需的结论。我们可以发现,反证法在数学证明题里运用是比较常见的,数学老师曾经教过我们解答证明题时从正向思考比较困难的时候,可以反向思考,因为正难则反,字面上理解就是正着想的时候,无从下手的情况下,就要反着思考,使用反证法进行证明,首先想要证明结论为真,就要先进行假设,得到矛盾结论,这样就能够对原
10、本结论进行真假的证明。反证法的本质就是根据假推导出真,那么反命题和原命题的关系就必然相反,成对立关系,判断其中一个真假那么另一个命题的真假自然就出现了。使用反证法解题可以证明出从正向思考较难的命题,在反证法证明前都假设“若成立,则”,无形中给我们增加了一个条件,只要导出矛盾所在即可。并且使用反证法可以使复杂的题目很快变的容易起来,做题思路也就会更加清晰。在现代数学中,反证法已经成为要解决的问题的最常见和有效的方法之一。反证法不仅能反够反应出证明的智慧,也体现了数学的神奇之处。当我们在应用反证法的时候熟练掌握做题的要领,认真思考证明过程,会使难解决的问题变的非常简单,也对学习数学增加了信心。6.
11、2 如何正确的做出反设若证明题从正面思考比较难以证明结论,我们则反其道去证明。如何能正确是做出反设,也是反证法里面重要的步骤,运用反证法证明命题的第一步就是首先要进行假设,在原有的命题的基础上,对命题的结论进行否定,然后从这个结论的否定开始进行证明,证明其命题为假,但是首先要假设其成立才能进行后续的证明。这个步骤十分关键,重点在于要正确的做出反设,只有这样后续的证明才能进行下去,最后的结论才能够保证是正确的,如果一开始的反设就是错误的,那么后面进行的推理证明就会因为开始的错误而错,对证明命题没有一点作用。如果想要正确的做出反设,就一定要注意下面几个方面:(1) 将题目中的已知和结论理解透彻,将
12、结论与相反假设之间的关系弄明白。(2) 如果结论的反面不是一种类型,而是有很多种类型,那么将这些类型都要考虑全面,一个个分类去进行证明,不能遗漏一点问题。总的来说,在将要对命题的结论做出否定之前,首要的任务就是理解结论,在结论的对立结论只有一种类型的时候,只需要假设这一种类型成立就行,很容易进行证明了。如果原本的结论的假设不只是一种类型,这种情况下,如果没有考虑到还有其它的情况,没有否定完全。想要进行证明就很难了。这时候认真理解题目,分析结论就十分关键,然后才能正确的做出反设。有以下几种常见的类型:例如:第一,至少类型结论:至少有一个错误假设:至少有两个或两个以上正确假设:没有一个第二,全部类
13、型结论:全部都是。错误假设:全部的都不是。正确假设:存在一个不是第三,最多类型结论:最多有一个错误假设:最少有一个正确假设:至少有两个还有某些常用词的否定形式:原结论词假设词原结论词假设词是不是存在不存在都是不都是至少有 n 个至多有n1个大(小)于不大(小)于至多有一个至少有两个都大于至少有一个不大于都小于至少有一个不小于6.3 如何正确导出矛盾反证法有一个明显常用的方法就是归谬,归谬不仅仅是反证法中的一个重点,也是一个难点。在刚刚接触反证法的时候,做出反设的时候,证明过程中要找到矛盾点时,我们会感觉到不是很容易,有时候可能都不懂矛盾点在哪里。反证法的核心就是从证明结果的反面出发,运用争取的
14、理论方法求得矛盾的结果,因此如何导出矛盾的结果就是反证法的关键所在。若是要顺利的找到结论和反设之间的矛盾,证明结论的正确性,首先要进行题目中逻辑关系的分析,弄清关系,这样就可以进行相关的证明。在进行反证法证明过程中有两个方面值得关注:第一点:导出矛盾,首先进行假设,从假设开始着手怎么去证明。第二点:证明过程一定要严谨,要有条理有依据的证明。从整体方面来说,归谬的情况可能会出现下面几个类型;1) 推导出与命题已知条件相矛盾的结果。2) 推导出与已经证明过的定理相矛盾的结果。3) 推导出与公理相矛盾的结果。4) 推导出与已知定义相矛盾的结果。5) 推导出与假设相矛盾的结果。7 反证法的应用反证法在
15、中学数学中的应用是比较常见,有些命题是适用于反证法的,只要掌握了它的特点,对于我们运用反证法是很好的帮助,根据命题的特点分类有以下几种适用于反证法的命题:7.1 唯一性命题当命题的结论需要证明“唯一性”,“存在性”时,适用于反证法。例3已知是两条相交直线,求证只有一个交点Error! Reference source not found.。证明:假设直线和不只有一个交点,那么就是直线和至少有两个交点。设这两个交点为两点,所以直线通过两点,直线也通过两点。从这我们可以得到,经过两点会有两条直线和。这个结论和公理“经过两点有且只有一条直线”相矛盾。所以假设不成立,则只有一个交点。例4 求证:方程的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反证法 中学数学 中的 应用 11
限制150内