土木工程外文翻译(13页).doc
《土木工程外文翻译(13页).doc》由会员分享,可在线阅读,更多相关《土木工程外文翻译(13页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-土木工程外文翻译-第 11 页本科毕业设计外文资料翻译 1 英文题目:Talling building and Steel construction2 中文题目:高层结构与钢结构学院(部): 土木建筑学院 专业班级: 学生姓名: 指导教师: XXX助教 2012年 06 月 02 日外文资料Talling building and Steel constructionAlthough there have been many advancements in building construction technology in general. Spectacular archievemen
2、ts have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both resi
3、dential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that un
4、der wind load they will not sway beyond an acceptable limit Excessive lateral sway may cause serious recurring damage to partitions, ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Stru
5、ctural systems of reinforced concrete as well as steel take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure for example the economy can be defined in terms of the total average quantity of steel p
6、er square foot of floor area of the building Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower
7、 boundary represents the premium for height for the traditional column-and-beam frame Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovat
8、ions have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses a system of rigid belt trusses at mid-height and at the top of the building may be used. A good
9、example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness to resist wind load can be achieved only if all column element can be connected to each other in such a way th
10、at the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin
11、structural steel towers of the 110-story World Trade Center building in New YorkColumn-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the
12、columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube With the continuing need for larger and taller buildings, the framed tube or the
13、 column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube bundled at the base of the building in three rows. Some of these individual tubes terminate at diffe
14、rent heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the worlds tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to l
15、ateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the faade of the building as a structural element which acts with the frame
16、d tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin faade, the framed members of the tube require less mass,
17、 and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encr
18、oach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to pr
19、ovide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (
20、1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an out
21、er framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the worlds present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell
22、Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube
23、in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel
24、plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction rema
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 土木工程 外文 翻译 13
限制150内