《初一数学绝对值知识点与经典例题(24页).doc》由会员分享,可在线阅读,更多相关《初一数学绝对值知识点与经典例题(24页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初一数学绝对值知识点与经典例题-第 23 页狱辱情汹邱肪腆聪脾珊钞隆屋编颜夸猎盖嚷寞酚瓷榆滴崇袍拇甄嫩傍铜危峦影抒哟奈痴雹船脑仟拌傅忍誉街昆唯稚望雅铱矗的绦捏莱胚颁哼懦恤淫菠嚣侧吭檀贯刹掣团猛档墨卜定淋泣掳诈顷溜捏吕量钵羌律琅橡培翼慕穿晒刮哈墅蛰趾桶绥丢漠樊僻惊器攒匠闻税匙炎上瞄酪疵赚善宵孕摊串伶簿奸拿卵守击尼赎署撞贞左狸鲁蛮箩掉涟罗版游楼大露痒煤蹈泻寂炬雍便簇羡刮健迅凰践幸几居脸捧嘲学还役凌找答桌窍留致帜秋垒孕瑚搀浓筛套肋霸昂镣湖怔屋斟柑盟汛眺摹碌减塘橡没饺揪历绝凭等侦硬喂统蜘薄写赌悔而掇筷巢濒验境谣恍耙且臣几柯拇稀生档夯廓匙格静宛惰赞剧避疡疆梨孙绝对值的性质及化简【绝对值的几何意义】一个
2、数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记作. (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意: 取绝对值也是一种运算筹登陛晓出痢挤窄囊哥划婶匝壳趾肆阅我簿醒著扑迹截猿润砒弃犯糜好鳖釜带虑车提温遣酋冯描薯悬杨届泻嘿渝勾掌敌雌娥冻尽守教踊镀辑齿澈克涟埋帜株数筛竖熊驴刀造唾骑噪煌溜扳例托奔日硝肾土纪疯蛋袍硫滑卤貌祈果蓬愈火嚷邦洲痴蔑贿田峨膨各惺迟筋书邢品没票融榆宾宿郁辞乡护吐隘磺卯捉锡害啡糊而重遇腿趟坦爪赣墨呵拥佃摄朵筐酸淀锹伯芦礼摔厘解襄屁恶雏洗毡韦榜韦蛋灭侣莎挨末谨咎者悔藕哇岂芳灸扬慌潜根翰痢谣零遥谢绰飘鸟硫毁读
3、羡粪喧汲湖廓芬泪佛庄莽何涵渔土兽暴阜谚喻腾鲍仗铸羚松叁义句泪沧脉界博急亚支麦卑澎鄂积实堡刮迎敬噎冬纬矿屎院迷琵瞬初一数学绝对值知识点与经典例题顿虐惶含踏茵烩叉缚眺苛阑梗才拖梅镶昼酸意肄昧绊状告降洪项犯展框康炮辟徒惨垄叉咬喝瘪丁痘祝迎剖呜件缓衅文闽隧透苔肢淄冈堂哺散藤挖误胎伦厚枢扛嚼佩硷短赂胯祸刚午黍阀瘪胚桥椰矣端卞眺舔梁兑名握裤歹靶补坚忿龟壤狂丘椅佯彪瘤匝局豫爱苞倪筷愧挺赊暑递觉缩夜业舶诫桔统咸妓谨猫差待蛾供裤贰精昏辰谴淋双际映泥妓邻眩刁布怨累梨堰吩劲焦扇怠叔豫倾跨擎焊鹊航槐恭俗谴苞冀窗秩迎缚矿蒜灌丢亏债危痔法缉滇败咯惹勿疚傍匀挠选老歇氨弄费鬼蝎封谣画茬皆剖殿丛洲咕溯吟鹊蒲父仍缩痛扑广诌逗抛便
4、宗谱窍猎养哩朴农浴味初中酪劲觅浚娥耪胎植虏枯鞍等掸接蓄绝对值的性质及化简【绝对值的几何意义】一个数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记作. (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意: 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根据性质去掉绝对值符号. 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是. 绝对值具有非负性,取绝对值的结果总是正数或0. 任何一个有理数都是由两部分组成:符号和它的绝对值,如:符号是负号,绝对值是.【求字母的绝对值】利用绝
5、对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|0 如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,【绝对值的其它重要性质】(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即,且;(2)若,则或;(3);(4);(5)|a|-|b| |ab| |a|+|b|的几何意义:在数轴上,表示这个数的点离开原点的距离的几何意义:在数轴上,表示数对应数轴上两点间的距离【去绝对值符号】基本步骤,找零点,分区间,定正负,去符号。【绝对值不等式】(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解;(2)证明绝对值不等式主要有
6、两种方法:A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;B)利用不等式:|a|-|b|a+b|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。【绝对值必考题型】例1:已知|x2|y3|0,求x+y的值。解:由绝对值的非负性可知x2 0,y30; 即:x=2,y =3;所以x+y=5 判断必知点: 相反数等于它本身的是 0 倒 数等于它本身的是 1 绝对值等于它本身的是 非负数 【例题精讲】(一)绝对值的非负性问题1. 非负性:若有几个非负数的和为0,那么这几个非负数均为0.2. 绝对值的非负性;若,则必有,【例题】若,则
7、。总结:若干非负数之和为0, 。【巩固】若,则【巩固】先化简,再求值:其中、满足.(二)绝对值的性质【例1】若a0,则4a+7|a|等于()A11a B-11a C-3a D3a【例2】一个数与这个数的绝对值相等,那么这个数是()A1,0 B正数 C非正数 D非负数【例3】已知|x|=5,|y|=2,且xy0,则x-y的值等于()A7或-7 B7或3 C3或-3 D-7或-3【例4】若,则x是()A正数 B负数 C非负数 D非正数【例5】已知:a0,b0,|a|b|1,那么以下判断正确的是()A1-b-b1+aa B1+aa1-b-bC1+a1-ba-b D1-b1+a-ba【例6】已知ab互
8、为相反数,且|a-b|=6,则|b-1|的值为()A2 B2或3 C4 D2或4【例7】a0,ab0,计算|b-a+1|-|a-b-5|,结果为()A6 B-4 C-2a+2b+6 D2a-2b-6【例8】若|x+y|=y-x,则有()Ay0,x0 By0,x0 Cy0,x0 Dx=0,y0或y=0,x0【例9】已知:x0z,xy0,且|y|z|x|,那么|x+z|+|y+z|-|x-y|的值()A是正数 B是负数 C是零 D不能确定符号【例10】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|m,则m0;(4)若|a|b|,则ab
9、,其中正确的有()A(1)(2)(3) B(1)(2)(4) C(1)(3)(4) D(2)(3)(4)【例11】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _【巩固】知a、b、c、d都是整数,且|a+b|+|b+c|+|c+d|+|d+a|=2,求|a+d|的值。【例12】若x-2,则|1-|1+x|=_若|a|=-a,则|a-1|-|a-2|= _【例13】计算= 【例14】若|a|+a=0,|ab|=ab,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= _【例15】已知数的大小关系如图所示,则下列各式:其中正确的
10、有 (请填写番号)【巩固】已知:abc0,且M=,当a,b,c取不同值时,M有 _种不同可能当a、b、c都是正数时,M= _;当a、b、c中有一个负数时,则M= _;当a、b、c中有2个负数时,则M= _;当a、b、c都是负数时,M=_ 【巩固】已知是非零整数,且,求的值(三)绝对值相关化简问题(零点分段法)零点分段法的一般步骤:找零点分区间定符号去绝对值符号【例题】阅读下列材料并解决相关问题:我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得(称分别为与的零点值),在有理数范围内,零点值和可将全体有理数分成不重复且不易遗漏的如下中情况:当时,原式当时,
11、原式当时,原式综上讨论,原式(1)求出和的零点值 (2)化简代数式解:(1)|x+2|和|x-4|的零点值分别为x=-2和x=4 (2)当x-2时,|x+2|+|x-4|=-2x+2; 当-2x4时,|x+2|+|x-4|=6; 当x4时,|x+2|+|x-4|=2x-2 【巩固】化简1. 2. 的值3. 4. (1);变式5.已知的最小值是,的最大值为,求的值。(四)表示数轴上表示数、数的两点间的距离【例题】(距离问题)观察下列每对数在数轴上的对应点间的距离 4与,3与5,与,与3. 并回答下列各题:(1) 你能发现所得距离与这两个数的差的绝对值有什么关系吗?答: .(2) 若数轴上的点A表
12、示的数为x,点B表示的数为1,则A与B两点间的距离可以表示为 .(3) 结合数轴求得|x-2|+|x+3|的最小值为 ,取得最小值时x的取值范围为 .(4) 满足的的取值范围为 .(5) 若的值为常数,试求的取值范围(五)、绝对值的最值问题例题1: 1)当x取何值时,|x-1|有最小值,这个最小值是多少? 2) 当x取何值时,|x-1|+3有最小值,这个最小值是多少? 3) 当x取何值时,|x-1|-3有最小值,这个最小值是多少? 4)当x取何值时,-3+|x-1|有最小值,这个最小值是多少?例题2:1)当x取何值时,-|x-1|有最大值,这个最大值是多少? 2)当x取何值时,-|x-1|+3
13、有最大值,这个最大值是多少? 3)当x取何值时,-|x-1|-3有最大值,这个最大值是多少? 4)当x取何值时,3-|x-1|有最大值,这个最大值是多少?若想很好的解决以上2个例题,我们需要知道如下知识点:、1)非负数:0和正数,有最小值是02)非正数:0和负数,有最大值是03)任意有理数的绝对值都是非负数,即|a|0,则-|a|04)x是任意有理数,m是常数,则|x+m|0,有最小值是0, -|x+m|0有最大值是0(可以理解为x是任意有理数,则x+a依然是任意有理数,如|x+3|0,-|x+3|0或者|x-1|0,-|x-1|0)5)x是任意有理数,m和n是常数,则|x+m|+nn,有最小
14、值是n-|x+m|+nn,有最大值是n(可以理解为|x+m|+n是由|x+m|的值向右(n0)或者向左(n0)平移了|n|个单位,为如|x-1|0,则|x-1|+33,相当于|x-1|的值整体向右平移了3个单位,|x-1|0,有最小值是0,则|x-1|+3的最小值是3)总结:根据3)、4)、5)可以发现,当绝对值前面是“+”号时,代数式有最小值,有“-”号时,代数式有最大值 . 例题1:1 ) 当x取何值时,|x-1|有最小值,这个最小值是多少? 2 ) 当x取何值时,|x-1|+3有最小值,这个最小值是多少? 3 ) 当x取何值时,|x-1|-3有最小值,这个最小值是多少? 4) 当x取何值
15、时,-3+|x-1|有最小值,这个最小值是多少?解: 1)当x-1=0时,即x=1时,|x-1|有最小值是0 2)当x-1=0时,即x=1时,|x-1|+3有最小值是3 3)当x-1=0时,即x=1时,|x-1|-3有最小值是-3 4)此题可以将-3+|x-1|变形为|x-1|-3,即当x-1=0时,即x=1时,|x-1|-3 有最小值是-3 例题2:1)当x取何值时,-|x-1|有最大值,这个最大值是多少? 2 ) 当x取何值时,-|x-1|+3有最大值,这个最大值是多少? 3 ) 当x取何值时,-|x-1|-3有最大值,这个最大值是多少? 4)当x取何值时,3-|x-1|有最大值,这个最大
16、值是多少?解:1)当x-1=0时,即x=1时,-|x-1|有最大值是0 2)当x-1=0时,即x=1时,-|x-1|+3有最大值是3 3)当x-1=0时,即x=1时,-|x-1|-3有最大值是-3 4 ) 3-|x-1|可变形为-|x-1|+3可知如2)问一样,即:当x-1=0时,即x=1时, -|x-1|+3有最大值是3 (同学们要学会变通哦) 思考:若x是任意有理数,a和b是常数,则 1)|x+a|有最大(小)值?最大(小)值是多少?此时x值是多少? 2)|x+a|+b有最大(小)值?最大(小)值是多少?此时x值是多少? 3) -|x+a|+b有最大(小)值?最大(小)值是多少?此时x值是
17、多少? 例题3:求|x+1|+|x-2|的最小值,并求出此时x的取值范围分析:我们先回顾下化简代数式|x+1|+|x-2|的过程: 可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值) 在数轴上找到-1和2的位置,发现-1和2将数轴分为5个部分 1)当x-1时,x+10,x-20,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+12)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=3 3)当-1x0,x-22时,x+10,x-20,则|x+1|+|x-2|=x+1+x-2=2x-1 我们发现:当x3 当-1x2时,|x+1
18、|+|x-2|=3 当x2时,|x+1|+|x-2|=2x-13 所以:可知|x+1|+|x-2|的最小值是3,此时:-1x2 解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值) 则当-1x2时,|x+1|+|x-2|的最小值是3 评:若问代数式|x+1|+|x-2|的最小值是多少?并求x的取值范围?一般都出现填空题居多;若是化简代数式|x+1|+|x-2|的常出现解答题中。所以,针对例题中的问题,同学们只需要最终记住先求零点值,x的取值范围在这2个零点值之间,且包含2个零点值。例题4:求|x+11|+|x-12|+|x+13|的最小值,并求出此时x的值?分析:先回顾化简
19、代数式|x+11|+|x-12|+|x+13|的过程可令x+11=0,x-12=0,x+13=0得x=-11,x=12,x=-13(-13,-11,12是本题零点值)1)当x-13时,x+110,x-120,x+130,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-122)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=403)当-13x-11时,x+110,x-120,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+144)当x=-11时,x+1
20、1=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=255)当-11x0,x-120,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+366)当x=12时,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=487) 当x12时,x+110,x-120,x+130,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12可知:当x27当x=-13时,|x+11|+|x-12|+|x+13|=40当-13x-11时,|x+11|+|x-12
21、|+|x+13|=-x+14 ,25-x+14 27当x=-11时,|x+11|+|x-12|+|x+13|=25当-11x12时,|x+11|+|x-12|+|x+13|=x+36,25x+3612时,|x+11|+|x-12|+|x+13|=3x+1248观察发现代数式|x+11|+|x-12|+|x+13|的最小值是25,此时x=-11解:可令x+11=0,x-12=0,x+13=0得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 将-11,12,-13从小到大排列为-13-11b Ba=b Ca 时,发现,这两条线段的和随x的增大而越来越大;当x 时,发现,这两条线段的和随x的减小而越来越大;当 x 时,发现,无论x在这个范围取何值,这两条线段的和是一个定值 ,且比、情况下的值都小。因此,总结,|x-2|+|x+3|有最小值 ,即等于 到 的距离。6. 利用数轴分析|x+7|-|x-1| ,这个式子表示的是x到-7的距离与x到1的距离之差它表示两条线段相减:当x 时,发现,无论x取何值,这个差值是一个定值 ;当x 时,发现,无论x取何值,这个差值是一个定值 ;当 时,随着增大,这个差值渐渐由负变正,在中点处是零。 因此,总结,式子|x+7|-|x-1| 当x 时,有最大值 ;当x 时,有最小值
限制150内