九年级数学上册知识点归纳(北师大版)(9页).doc
《九年级数学上册知识点归纳(北师大版)(9页).doc》由会员分享,可在线阅读,更多相关《九年级数学上册知识点归纳(北师大版)(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-九年级数学上册知识点归纳(北师大版)-第 - 9 - 页九年级数学上册知识点归纳(北师大版)第一章 特殊平行四边形第二章 一元二次方程第三章 概率的进一步认识第四章 图形的相似第五章 投影与视图第六章 反比例函数(八下前情回顾)平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。平行线之间的距离:若
2、两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。第一章 特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。2矩形的性质与判定矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形
3、是轴对称图形,有两条对称轴)矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。推论:直角三角形斜边上的中线等于斜边的一半。3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。两条腰
4、相等的梯形叫做等腰梯形。一条腰和底垂直的梯形叫做直角梯形。平行四边形菱形矩形正方形一组邻边相等一组邻边相等且一个内角为直角(或对角线互相垂直平分)一内角为直角一邻边相等或对角线垂直一个内角为直角(或对角线相等)图3等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。三角形的中位线平行于第三边,并且等于第三边的一半。夹在两条平行线间的平行线段相等。在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程1认识一元二次方程只含有一个未知数的整式方程,且都可以化为(a、b、c为常数,a0)的形式,这样的方程叫一元二次方程。把(a、b、c为常数,a
5、0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。2用配方法求解一元二次方程配方法 配方法解一元二次方程的基本步骤:把方程化成一元二次方程的一般形式;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的形式;两边开方求其根。3用公式法求解一元二次方程公式法 (注意在找abc时须先把方程化为一般形式)4用因式分解法求解一元二次方程分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)5一元二次方程的根与系数的关系根与系数的关系:当b2-4ac0时,方程有两个不等的实数根;当b2-4
6、ac=0时,方程有两个相等的实数根;当b2-4ac0时,方程无实数根。如果一元二次方程的两根分别为x1、x2,则有:。一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式: 其他能用或表达的代数式。(3)已知方程的两根x1、x2,可以构造一元二次方程:(4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程 的根6应用一元二次方程在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等量关系(一般地
7、,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。处理问题的过程可以进一步概括为: 第三章 概率的进一步认识用树状图或表格求概率相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。【知识点1】频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即把刻画事件A发
8、生的可能性大小的数值,称为事件A发生的概率。【知识点2】通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。【知识点3】利用画树状图或列表法求概率(重难点)第四章 图形的相似1成比例线段一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成.2. 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.3. 注意点:a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 上册 知识点 归纳 北师大
限制150内