双曲线的简单几何性质(内容全面共3课时).ppt
《双曲线的简单几何性质(内容全面共3课时).ppt》由会员分享,可在线阅读,更多相关《双曲线的简单几何性质(内容全面共3课时).ppt(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.2 双曲线简单的几何性质 (一),复习引入,变式: 上述方程表示双曲线,则m的取值范围是 _,m2或m1,求适合下列条件的双曲线的标准方程 a=4,b=3,焦点在x轴上; 焦点为(0,6),(0,6),经过点(2,5),已知方程 表示焦点在y轴的 双曲线,则实数m的取值范围是_,m2,| |MF1|-|MF2| | =2a( 2a|F1F2|),F ( c, 0) F(0, c),2、对称性,一、研究双曲线 的简单几何性质,1、范围,关于x轴、y轴和原点都是对称。,x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。,(-x,-y),(-x,y),(x,y),(x,-y)
2、,课堂新授,3、顶点,(1)双曲线与对称轴的交点,叫做双曲线的顶点,M(x,y),4、渐近线,N(x,y),慢慢靠近,5、离心率,离心率。,ca0,e 1,e是表示双曲线开口大小的一个量,e越大开口越大,(1)定义:,(2)e的范围:,(3)e的含义:,(4)等轴双曲线的离心率e= ?,( 5 ),(1)范围:,(4)渐近线:,(5)离心率:,小 结,或,或,关于坐标 轴和 原点 都对 称,例1 :求双曲线,的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。,解:把方程化为标准方程,可得:实半轴长a=4,虚半轴长b=3,半焦距c=,焦点坐标是(0,-5),(0,5),离心率:,渐近线方程:,
3、例题讲解,例2:,1、若双曲线的渐近线方程为 则双曲线的离心率为 。 2、若双曲线的离心率为2,则两条渐近线的夹角为 。,课堂练习,例3 :求下列双曲线的标准方程:,例题讲解,法二:巧设方程,运用待定系数法. 设双曲线方程为 ,法二:设双曲线方程为, 双曲线方程为, ,解之得k=4,1、“共渐近线”的双曲线的应用,0表示焦点在x轴上的双曲线; 0表示焦点在y轴上的双曲线。,总结:,双曲线的渐近线方程为,解出,椭圆与双曲线的比较,小 结,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称
4、,渐近线,F2(0,c) F1(0,-c),2.求中心在原点,对称轴为坐标轴,经过点 P( 1,3) 且离心率为 的双曲线标准方程.,1. 过点(1,2),且渐近线为,的双曲线方程是_.,2.3.2 双曲线简单的几何性质 (二),关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),B1(0,-b),B2(0,b),F1(-c,0) F2(c,0),关于x轴、y轴、原点对称,A1(- a,0),A2(a,0),渐进线,无,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(
5、0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c) F1(0,-c),1、“共渐近线”的双曲线,0表示焦点在x轴上的双曲线;0表示焦点在y轴上的双曲线。,2、“共焦点”的双曲线,(1)与椭圆 有共同焦点的双曲线方程表 示为,(2)与双曲线 有共同焦点的双曲线方 程表示为,复习练习:,3、求以椭圆 的焦点为顶点,以椭圆的 顶点为焦点的双曲线的方程。,例1、双曲线型自然通风塔的外形,是双曲线 的一部分绕其虚轴旋转所成的曲面,它的 最小半径为12m,上口半径为13m,下口半径 为25m,高55m.选择适当的坐标系,求出此 双曲线的方程(精确到1m).,A,A,0,x,C,C,B,B,y,例题
6、讲解,引例:点M(x, y)与定点F(c, 0)的距离和它到定直线 的距离比是常数 (ca0),求点M的轨迹.,解:,设点M(x,y)到l的距离为d,则,即,化简得,(c2a2)x2 a2y2=a2 (c2 a2),设c2a2 =b2,,(a0,b0),故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.,b2x2a2y2=a2b2,即,就可化为:,点M的轨迹也包括双曲线的左支.,一、第二定义,双曲线的第二定义,平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e1)的点的轨迹是双曲线。,定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率.,对于双
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 简单 几何 性质 内容 全面 课时
限制150内