第7讲 点差法公式在椭圆中点弦问题中的妙用(8页).doc
《第7讲 点差法公式在椭圆中点弦问题中的妙用(8页).doc》由会员分享,可在线阅读,更多相关《第7讲 点差法公式在椭圆中点弦问题中的妙用(8页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第7讲 点差法公式在椭圆中点弦问题中的妙用-第 9 页第7讲 点差法公式在椭圆中点弦问题中的妙用定理 在椭圆(0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则. 证明:设M、N两点的坐标分别为、,则有,得又同理可证,在椭圆(0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.典题妙解例1 设椭圆方程为,过点的直线交椭圆于点A、B,O为坐标原点,点P满足,点N的坐标为.当绕点M旋转时,求:(1)动点P的轨迹方程;(2)的最大值和最小值.解:(1)设动点P的坐标为.由平行四边形法则可知:点P是弦AB的中点 .焦点在y上, 假设
2、直线的斜率存在.由得:整理,得:当直线的斜率不存在时,弦AB的中点P为坐标原点,也满足方程。所求的轨迹方程为(2)配方,得:当时,;当时,例2 在直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点P和Q.(1)求的取值范围;(2)设椭圆与轴正半轴、轴正半轴的交点分别为A、B,是否存在常数,使得向量与共线?如果存在,求的取值范围;如果不存在,请说明理由.解:(1)直线的方程为由得:直线与椭圆有两个不同的交点,0.解之得:或.的取值范围是.(2)在椭圆中,焦点在轴上,设弦PQ的中点为,则由平行四边形法则可知:与共线,与共线.,从而由得:,由(1)可知时,直线与椭圆没有两个公共点,不存在符合题
3、意的常数.例3已知椭圆(0)的左、右焦点分别为、,离心率,右准线方程为.() 求椭圆的标准方程;() 过点的直线与该椭圆相交于M、N两点,且,求直线的方程.解:()根据题意,得.所求的椭圆方程为.()椭圆的焦点为、. 设直线被椭圆所截的弦MN的中点为.由平行四边形法则知:.由得:.若直线的斜率不存在,则轴,这时点P与重合,与题设相矛盾,故直线的斜率存在.由得: 代入,得整理,得:.解之得:,或.由可知,不合题意.,从而.所求的直线方程为,或.例4 已知椭圆(0)的离心率为,过右焦点F的直线与C相交于A、B两点. 当的斜率为1时,坐标原点O到的距离为.(1)求的值;(2)C上是否存在点P,使得当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第7讲 点差法公式在椭圆中点弦问题中的妙用8页 点差法 公式 椭圆 中点 问题 中的 妙用
限制150内