双曲线的简单几何性质(时).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《双曲线的简单几何性质(时).ppt》由会员分享,可在线阅读,更多相关《双曲线的简单几何性质(时).ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.4双曲线的简单几何性质,第二课时,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),B1(0,-b),B2(0,b),F1(-c,0) F2(c,0),关于x轴、y轴、原点对称,A1(- a,0),A2(a,0),渐进线,无,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c) F1(0,-c),1、“共渐近线”的双曲线,0表示焦点在x轴上的双曲线;0表示焦点在y轴上的双曲线。,2、“共焦点”的双曲线,(1)
2、与椭圆 有共同焦点的双曲线方程表 示为,(2)与双曲线 有共同焦点的双曲线方 程表示为,复习练习:,3、求以椭圆 的焦点为顶点,以椭圆的 顶点为焦点的双曲线的方程。,例1、双曲线型自然通风塔的外形,是双曲线 的一部分绕其虚轴旋转所成的曲面,它的 最小半径为12m,上口半径为13m,下口半径 为25m,高55m.选择适当的坐标系,求出此 双曲线的方程(精确到1m).,A,A,0,x,C,C,B,B,y,例题讲解,引例:点M(x, y)与定点F(c, 0)的距离和它到定直线 的距离比是常数 (ca0),求点M的轨迹.,解:,设点M(x,y)到l的距离为d,则,即,化简得,(c2a2)x2 a2y2
3、=a2 (c2 a2),设c2a2 =b2,,(a0,b0),故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.,b2x2a2y2=a2b2,即,就可化为:,点M的轨迹也包括双曲线的左支.,一、第二定义,双曲线的第二定义,平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e1)的点的轨迹是双曲线。,定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率.,对于双曲线,是相应于右焦点F(c, 0)的 右准线,类似于椭圆,是相应于左焦点F(-c, 0) 的左准线,点M到左焦点与左准线的距 离之比也满足第二定义.,想一想:中心在原点,焦点在y轴上的双曲线的
4、准线方程是怎样的?,相应于上焦点F(c, 0)的是上准线,相应于下焦点F(-c, 0)的是下准线,例2、点M(x,y)与定点F(5,0),的距离 和它到定直线: 的距离的比是常 数 , 求点M的轨迹.,y,0,d,由已知:,解:,a=4,b=3,c=5,双曲线的右准线为l:,作MNl, AA1l, 垂足分别是N, A1,N,A1,当且仅当M是 AA1与双曲线的交点时取等号,令y=2, 解得:,归纳总结,1. 双曲线的第二定义,平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e1)的点的轨迹是双曲线。,定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 简单 几何 性质
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内