简单几何体的外接球与内切球问题(4页).doc
《简单几何体的外接球与内切球问题(4页).doc》由会员分享,可在线阅读,更多相关《简单几何体的外接球与内切球问题(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-简单几何体的外接球与内切球问题-第 4 页简单几何体的外接球与内切球问题一、外接球的问题:简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键(一) 由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心由上述性质,可以得到确定简单多面体外接球的球心的如下结论结论1:正方体或长方体的外接球的球心其体对角线的中点结论2:正棱柱的外接球的球心是上下底面中心的连线的中点结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点结论4:正棱锥的外接球的球心在其
2、高上,具体位置可通过计算找到结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心例1、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为,则这个球的体积为 . 例2、已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 .例3、在直三棱柱中,,则直三棱柱的外接球的表面积 .例4、三棱锥A-BCD中,BAAD,BCCD,且AB=1,AD=,则此三棱锥外接球的体积为 . 例5、沿矩形ABCD的对角线AC折起,形成空间四边形ABCD,使得二面角B-AC-D为120,若AB=2,BC=1,
3、则此时四面体ABCD的外接球的体积为 . (二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处以下是常见的、基本的几何体补成正方体或长方体的途径与方法途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体例6、正四棱锥的底面边长和各侧棱长都为,点都在同一球面上,则此球的体积为 . 例7、如果三棱锥的三个侧面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简单 几何体 外接 内切球 问题
限制150内