等腰三角形性质:三线合一”专题(4页).doc





《等腰三角形性质:三线合一”专题(4页).doc》由会员分享,可在线阅读,更多相关《等腰三角形性质:三线合一”专题(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-等腰三角形性质:三线合一”专题-第 4 页等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。这就是著名的等腰三角形“三线台一”性质。“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。反之,如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合,那么这个三角形就是等腰三角形。【例题讲解】例1 如图所示,在等腰ABC中,AD是BC边上的中线,点E在AD上。求证:BE=CE。变式练习1-1 如图,在ABC中,AB=AC,D是形外一点,且BD=CD。求证:AD垂直平分BC。变式练习1-2 已知,如图所示,AD是A
2、BC,DE、DF分别是ABD和ACD的高。求证:AD垂直平分EF。ABBCED例二:如图ABC中,ABAC,A36,BD平分ABC,DEAB于E,若CD4,且BDC周长为24,求AE的长度。 例三. 等腰三角形顶角为,一腰上的高与底边所夹的角是,则与的关系式为=_。图1 分析:如图1,AB=AC,BDAC于D,作底边BC上的高AE,E为垂足,则可知EAC=EAB,又,所以。 例四. 已知:如图2,ABC中,AB=AC,CEAE于E,E在ABC外,求证:ACE=B。图2 分析:欲证ACE=B,由于AC=AB,因此只需构造一个与RtACE全等的三角形,即做底边BC上的高即可。 证明:作ADBC于D
3、, AB=AC, 又, BD=CE。 在RtABD和RtACE中, ABAC,BD=CE, RtABDRtACE(HL)。 ACE=B 例五. 已知:如图3,等边三角形ABC中,D为AC边的中点,E为BC延长线一点,CE=CD,DMBC于M,求证:M是BE的中点。图3 分析:欲证M是BE的中点,已知DMBC,因此只需证DB=DE,即证DBE=E,根据等边ABC,BD是中线,可知DBC=30,因此只需证E=30。 证明:联结BD, ABC是等边三角形, ABC=ACB=60 CD=CE, CDE=E=30 BD是AC边上中线, BD平分ABC,即DBC=30 DBE=E。 DB=DE 又DMBE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰三角形 性质 三线 合一 专题

限制150内