直线的交点坐标和距离公式(14页).doc
《直线的交点坐标和距离公式(14页).doc》由会员分享,可在线阅读,更多相关《直线的交点坐标和距离公式(14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-直线的交点坐标和距离公式-第 14 页 备考方向要明了考 什 么怎 么 考1.能用解方程组的方法求两条相交直线的交点坐标2.掌握两点间的距离公式、点到直线的距离公式、会求两条平行直线间的距离.1.两条直线的交点坐标一般是不单独命题的,常作为知识点出现在相关的位置关系中2.两点间距离公式是解析几何的一个基本知识点,点到直线的距离公式是高考考查的重点,一般将这两个知识点结合直线与圆或圆锥曲线的问题中来考查.归纳知识整合1两条直线的交点设两条直线的方程为l1:A1xB1yC10,l2:A2xB2yC20,则两条直线的交点坐标就是方程组的解,(1)若方程组有唯一解,则两条直线相交,此解就是交点的坐标
2、;(2)若方程组无解,则两条直线无公共点,此时两条直线平行,反之,亦成立探究1.如何用两直线的交点判断两直线的位置关系?提示:当两条直线有一个交点时,两直线相交;没有交点时,两条直线平行,有无数个交点时,两条直线重合2距离点P1(x1,y1),P2(x2,y2)之间的距离|P1P2| 点P0(x0,y0)到直线l:AxByC0的距离d两条平行线AxByC10与AxByC20间的距离d探究2.使用点到直线的距离公式和两条平行线间的距离公式时应注意什么?提示:使用点到直线距离公式时要注意将直线方程化为一般式使用两条平行线间距离公式时,要将两直线方程化为一般式且x、y的系数对应相等自测牛刀小试1(教
3、材习题改编)原点到直线x2y50的距离是()A1B.C2 D.解析:选Dd.2点A在x轴上,点B在y轴上,线段AB的中点M的坐标是(3,4),则AB的长为()A10 B5C8 D6解析:选A设A(a,0),B(0,b),则a6,b8,即A(6,0),B(0,8)所以|AB|10.3若三条直线2x3y80,xy10和xby0相交于一点,则b()A1 BC2 D.解析:选B由得将其代入xby0,得b.4已知直线l1与l2:xy10平行,且l1与l2的距离是,则直线l1的方程为_解析:设直线l1的方程为xy0,则,解得1或3.即直线l1的方程为xy10或xy30.答案:xy10或xy305点(2,3
4、)关于直线xy10的对称点是_解析:设对称点为(a,b),则解得答案:(4,3)两条直线的交点问题例1(1)经过直线l1:xy10与直线l2:xy30的交点P,且与直线l3:2xy20垂直的直线l的方程是_(2)已知两直线l1:mx8yn0与l2:2xmy10,若l1与l2相交,则实数m,n满足的条件是_自主解答(1)法一:由方程组解得即点P(2,1),l3l,k,直线l的方程为y1(x2),即x2y0.法二:直线l过直线l1和l2的交点,可设直线l的方程为xy1(xy3)0,即(1)x(1)y130.l与l3垂直,2(1)(1)0,解得.直线l的方程为xy0,即x2y0.(2)因为两直线l1
5、与l2相交,所以当m0时,l1的方程为y,l2的方程为x,两直线相交,此时m,n满足条件m0,nR;当m0时,由两直线相交所以,解得m4,此时,m,n满足条件m4,nR.答案(1)x2y0(2)m4,nR若将本例(1)中条件“垂直”改为“平行”,试求l的方程解:由方程组解得 即点P(2,1)又ll3,即k2,故直线l的方程为y12(x2),即2xy50.经过两条直线交点的直线方程的设法经过两相交直线A1xB1yC10和A2xB2yC20的交点的直线系方程为A1xB1yC1(A2xB2yC2)0(这个直线系方程中不包括直线A2xB2yC20)或m(A1xB1yC1)n(A2xB2yC2)0.1设
6、直线l1:yk1x1,l2:yk2x1,其中实数k1,k2满足k1k220.(1)证明l1与l2相交;(2)证明l1与l2的交点在椭圆2x2y21上证明:(1)反证法:假设l1与l2不相交,则l1与l2平行,则有k1k2,代入k1k220得kk2,显然不成立,与已知矛盾,从而k1k2,即l1与l2相交(2)由方程组解得交点P的坐标为,而2x2y22221,即交点P(x,y)在椭圆2x2y21上距离公式的应用例2已知点P(2,1)(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?(3)是否存在过P点且与原点距离为6的直线?若存在,求出方程
7、;若不存在,请说明理由自主解答(1)过P点的直线l与原点距离为2,而P点坐标为(2,1),可见,过P(2,1)且垂直于x轴的直线满足条件,此时l的斜率不存在,其方程为x2.若斜率存在,设l的方程为y1k(x2),即kxy2k10.由已知得2,解得k.此时l的方程为3x4y100.综上,可得直线l的方程为x2或3x4y100.(2)作图可得过P点与原点O的距离最大的直线是过P点且与PO垂直的直线,如图由lOP,得klkOP1,所以kl2.由直线方程的点斜式得y12(x2),即2xy50.即直线2xy50是过P点且与原点O距离最大的直线,最大距离为.(3)由(2)可知,过P点不存在到原点距离超过的
8、直线,因此不存在过P点且到原点距离为6的直线求两条平行线间距离的两种思路(1)利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离(2)利用两平行线间的距离公式2已知A(4,3),B(2,1)和直线l:4x3y20,在坐标平面内求一点P,使|PA|PB|,且点P到直线l的距离为2.解:设点P的坐标为(a,b)A(4,3),B(2,1),线段AB的中点M的坐标为(3,2)而AB的斜率kAB1,线段AB的垂直平分线方程为y2x3,即xy50.点P(a,b)在上述直线上,ab50.又点P(a,b)到直线l:4x3y20的距离为2,2,即4a3b210,由联立可得或所求点P的坐
9、标为(1,4)或.对 称 问 题例3已知直线l:2x3y10,点A(1,2)求:(1)点A关于直线l的对称点A的坐标;(2)直线m:3x2y60关于直线l的对称直线m的方程自主解答(1)设A(x,y),再由已知解得故A.(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M必在直线m上设对称点M(a,b),则得M.设直线m与直线l的交点为N,则由得N(4,3)又m经过点N(4,3),由两点式得直线m的方程为9x46y1020.求点关于直线对称问题的基本方法(1)已知点与对称点的连线与对称轴垂直;(2)已知点与对称点的中点在对称轴上利用以上两点建立方程组可求点关于直线的对称问
10、题3直线y2x是ABC的一个内角平分线所在的直线,若点A(4,2),B(3,1),求点C的坐标解:把A,B两点的坐标代入y2x知,A,B不在直线y2x上,因此y2x为ACB的平分线,设点A(4,2)关于y2x的对称点为A(a,b),则kAA,线段AA的中点坐标为,解得A(4,2)y2x是ACB平分线所在直线的方程,A在直线BC上,直线BC的方程为,即3xy100.由解得C(2,4)1条规律与已知直线垂直及平行的直线系的设法与直线AxByC0(A2B20)垂直和平行的直线方程可设为:(1)垂直:BxAym0;(2)平行:AxByn0.1种思想转化思想在对称问题中的应用一般地,对称问题包括点关于点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 交点 坐标 距离 公式 14
限制150内